Skip to main content
Log in

Stability and decoherence of optical bipolaron in symmetric quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Optical bipolaron’s stability and decoherence confined in the symmetric quantum dot are investigated utilizing the modified Lee, Low, and Pines variational method. The binding energy of optical bipolaron in symmetrical quantum dot systems is obtained by computing the energy of the fundamental state, the energy of the ground state of the single polaron, and the prime state excited energy. The formation of the bipolaron in quantum dot structures is thus obtained. Optical bipolaron stability appears to be quite sensitive to the dimensionality of the quantum dot and the material, where α and η material parameters are considered. By investigating information processing, it is possible to compute Shannon’s entropy to study a qubit’s decoherence when in the superimposed state of the fundamental and the prime state excited. We see that decoherence time grows and shrinks with the dielectric constant and the dispersion coefficient. Thus, there exists a threshold dielectric constant and dispersion coefficient which maximizes decoherence time. This threshold dielectric constant and dispersion coefficient increases with the reduction in electron–phonon coupling. This study gives a guideline for the appropriate materials used in the construction of nanodevice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Nat. Mater. 6, 810 (2007)

    Article  Google Scholar 

  2. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    Article  Google Scholar 

  3. U. Woggon, S.V. Gaponenko, Phys. Status Solidi B 189, 285 (1995)

    Article  Google Scholar 

  4. U. Bockelman, G. Bastard, Phys. Rev. B 42, 8947 (1990)

    Article  Google Scholar 

  5. H. Benisty, C.M. Sotomayor-Torres, C. Weisbuch, ibid 44, 10945 (1991)

    Google Scholar 

  6. T. Inoshita, H. Sakaki, Phys. Rev. B 46, 7260 (1992)

    Article  Google Scholar 

  7. L.C. Fai, Theory of Polarons Excitons (Master Notes, University of Dschang, Dschang, 2014)

    Google Scholar 

  8. C. Zhao, C. Chunyu, J. Xiao, J. Semicond. 34, 112002 (2013)

    Article  Google Scholar 

  9. Shihua Chen, J. Xiao, Chin. J. Electron. 18, 262 (2009)

    Google Scholar 

  10. J.P. Barnes, W.S. Warren, Phys. Rev. A 60, 4363 (1999)

    Article  Google Scholar 

  11. A. Grodecka, P. Machnikowski, Phys. Rev. B 73, 125306 (2006)

    Article  Google Scholar 

  12. M. Lovric, H.G. Krojanski, D. Suter, Phys. Rev. A 75, 042305 (2007)

    Article  Google Scholar 

  13. D. Tolkunov, V. Privman, Phys. Rev. A 69, 062309 (2004)

    Article  Google Scholar 

  14. E.P. Pokatilov, M.D. Croitoru, V.M. Fomin, J.T. Devreese, Phys. Status Solidi (b) 237, 244 (2003)

    Article  Google Scholar 

  15. L.C. Fai, A. Fomethe, A.J. Fotue, V.B. Mborong, S. Domngang, N. Issofa, M. Tchoffo, Superlatt. Microstuct. 43, 44 (2008)

    Article  Google Scholar 

  16. S. Mukhopadhyay, A. Chatterjee, J. Phys, Condens. Matter 8, 4017 (1996)

    Article  Google Scholar 

  17. R.T. Senger, A. Erçelebi, J. Phys.: Condens. Matter 14, 5549 (2002)

    Google Scholar 

  18. Z.T. de Oliveira Jr, M.C. dos Santos, Solid State Commun. 114, 49 (2000)

    Article  Google Scholar 

  19. M. Hohenadler, P.B. Littlewood, Phys. Rev. B 76, 155122 (2007)

    Article  Google Scholar 

  20. Y.H. Ruan, Y.T. Liang, F.L. Wu et al., Chin. J. Low Temp. Phys. 24, 12 (2002)

    Google Scholar 

  21. S. Mukhopadhyay, A. Chatterjee, J. Phys.: Condens. Matter 11, 2071 (1999)

    Google Scholar 

  22. P.M. Krishna, S. Mukhopadhyay, A. Chatterjee, Phys. Lett. A 360, 655 (2007)

    Article  Google Scholar 

  23. S.C. Kenfack, A. Fotue, M.F.C. Fobasso, G.N. Bawe Jr., L.C. Fai, Superlatt. Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.04.037

    Article  Google Scholar 

  24. W.J. Huybrechts, J. Phys. C: Sol. State Phys. 10, 3761 (1977)

    Article  Google Scholar 

  25. Y.-H. Ruan and Q.-H. Chen, Communications in Theoretical Physics, vol. 48, Num 1 (2007)

  26. C.E. Shannon, The Bell System Technical Journal 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  27. S.-S. Li, G.-L. Long, F.-S. Bai, S.-L. Feng, H.-Z. Zheng, Proc. Natl. Acad. Sci. 98(21), 11847–11848 (2001)

    Article  Google Scholar 

  28. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) (Pergamon, London, 1987)

    MATH  Google Scholar 

  29. Y.J. Wen, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18(2), 446 (2009)

    Article  Google Scholar 

  30. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, C.M. Ekengue, C.D.G. Ngoufack, D. Akay, L.C. Fai, Superlatt. Microstruct. 129, 77–90 (2019)

    Article  Google Scholar 

  31. Y.H. Ruan, Q.H. Chen, Z.K. Jiao, Acta Phys. Soc. 7(8), 598 (1998)

    Google Scholar 

  32. J.L. Xiao, J. Low Temp. Phys. 172, 122 (2013)

    Article  Google Scholar 

  33. S.S. Li, J.B. Xia, F.H. Yang, Z.C. Niu, S.L. Feng, H.Z. Zheng, J. Appl. Phys. 90, 6151 (2001)

    Article  Google Scholar 

  34. S.S. Li, L. Gui-Lu, F.S. Bai, S.L. Feng, H.Z. Zheng, Proc. Natl. Acad. Sci. U.S.A. 98, 11847 (2001)

    Article  Google Scholar 

  35. S.C. Kenfack, A. Fotue, M.F.C. Fobasso, G.N. Bawe Jr., L.C. Fai, Superlatt. Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.04.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotue, A.J., Djomou, JR.D., Kenfack, S.C. et al. Stability and decoherence of optical bipolaron in symmetric quantum dot. Eur. Phys. J. Plus 135, 838 (2020). https://doi.org/10.1140/epjp/s13360-020-00835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00835-5

Navigation