Skip to main content
Log in

Heavy-ion-induced fission of \(^{181}\)Ta and \(^{209}\)Bi at intermediate energies by CRISP model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study the mechanism of the nuclear reaction of \(^{11}\)B ion with \(^{181}\)Ta and \(^{209}\)Bi targets at intermediate energies and analyze the nuclear reaction processes starting from the initial nucleus–nucleus collision up to the fragments production. The experimental data are derived from the literature Karapetyan et al. (Phys Rev C 94: 024618, 2016). A new branch of CRISP model has been extended in the framework of the rotating liquid drop model to describe heavy-ion-induced reactions. Experimental mass-yield distribution is compared with the results of the Monte Carlo simulation code CRISP using the theoretical model calculations. The experimental data of spallation products are also described by the CRISP model. The fission cross sections, fissility and fragment mass distributions are calculated and compared with experimental data. We conclude that CRISP model provides a good description for the cases analyzed in this study and gives us confidence that it might be applied to other cases as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.S. Karapetyan, A. Deppman, V. Guimarães, A. Balabekyan, N.A. Demekhina, Phys. Rev. C 94, 024618 (2016)

    Article  ADS  Google Scholar 

  2. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)

    Google Scholar 

  3. D. Hilscher, I.I. Gontchar, H. Rossner, Phys. At. Nucl. 57, 1187–1199 (1994)

    Google Scholar 

  4. Wikipedia contributors, Nuclear fission. (Wikipedia, The Free Encyclopedia, 2020), https://en.wikipedia.org/w/index.php?title=Nuclear_fission&oldid=974960614. Accessed 6 September 2020

  5. A. Deppman, S.B. Duarte, G. Silva, O.A.P. Tavares, S. Anefalos, J.D.T. Arruda-Neto, T.E. Rodrigues, J. Phys. G: Nucl. Part. Phys. 30, 1991–2002 (2004)

    Article  ADS  Google Scholar 

  6. D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, S. Leray, Phys. Rev. C 90, 054602 (2014)

    Article  ADS  Google Scholar 

  7. A. Boudard, J. Cugnon, J.-C. David, S. Leray, D. Mancusi, Phys. Rev. C 87, 014606 (2013)

    Article  ADS  Google Scholar 

  8. L. Audirac, A. Obertelli, P. Doornenbal, D. Mancusi, S. Takeuchi, N. Aoi, H. Baba, S. Boissinot, A. Boudard, A. Corsi, A. Gillibert, T. Isobe, A. Jungclaus, V. Lapoux, J. Lee, S. Leray, K. Matsui, M. Matsushita, T. Motobayashi, D. Nishimura, S. Ota, E.C. Pollacco, G. Potel, H. Sakurai, C. Santamaria, Y. Shiga, D. Sohler, D. Steppenbeck, R. Taniuchi, H. Wang, Phys. Rev. C 88, 041602 (2013)

    Article  ADS  Google Scholar 

  9. S. Leray, D. Mancusi, P. Kaitaniemi, J.C. David, A. Boudard, B. Braunn, J. Cugnon, J. Phys: Conf. Ser. 420, 012065 (2013)

    Google Scholar 

  10. A. Boudard, J. Cugnon, S. Leray, C. Volant, Phys. Rev. C 66, 044615 (2002)

    Article  ADS  Google Scholar 

  11. K. Mahata, S. Kailas, S.S. Kapoor, Phys. Rev. C 92, 034602 (2015)

    Article  ADS  Google Scholar 

  12. T. Kodama, S.B. Duarte, K.C. Chung, R.A.M.S. Nazareth, Phys. Rev. Lett. 49, 536–539 (1982)

    Article  ADS  Google Scholar 

  13. M. Goncalves, S. de Pina, D.A. Lima, W. Milomen, E.L. Medeiros, S.B. Duarte, Phys. Lett. B 406, 1–6 (1997)

    Article  ADS  Google Scholar 

  14. A. Deppman, O.A.P. Tavares, S.B. Duarte, E.C. de Oliveira, J.D.T. Arruda-Neto, S.R. de Pina, V.P. Likhachev, O. Rodriguez, J. Mesa, M. Goncalves, Comput. Phys. Commun. 145, 385–394 (2002)

    Article  ADS  Google Scholar 

  15. I. Gonzalez, C. Barbero, A. Deppman, S.B. Duarte, F. Krmpotic, O. Rodriguez, J. Phys. G: Nucl. Part. Phys. 38, 115105 (2011)

    Article  ADS  Google Scholar 

  16. A. Deppman, O.A.P. Tavares, S.B. Duarte, J.D.T. Arruda-Neto, M. Goncalves, V.P. Likhachev, J. Mesa, E.C. de Oliveira, S.R. de Pina, O. Rodriguez, Nucl. Instrum. Meth. B 211, 15–21 (2003)

    Article  ADS  Google Scholar 

  17. E. Andrade-II, E. Freitas, O.A.P. Tavares, S.B. and Duarte, A. Deppman, F. Garcia, V. Guimaraes, J.R.B. Oliveira, K.C.D. Macario, F.A. Genezini, AIP Conference Proceedings 1139, (2009) 64–69

  18. E. Andrade-II, J.C.M. Menezes, S.B. Duarte, F. Garcia, P.C.R. Rossi, O.A.P. Tavares, A. Deppman, J. Phys. G. Nucl. Partic. 38, 085104 (2011)

    Article  ADS  Google Scholar 

  19. A. Deppman, O.A.P. Tavares, S.B. Duarte, E.C. de Oliveira, J.D.T. Arruda-Neto, S.R. de Pina, V.P. Likhachev, O. Rodriguez, J. Mesa, M. Gonçalves, Phys. Rev. Lett. 87, 182701 (2001)

    Article  ADS  Google Scholar 

  20. A. Deppman, G. Silva, S. Anefalos, S.B. Duarte, F. García, F.H. Hisamoto, O.A.P. Tavares, Phys. Rev. C 73, 064607 (2006)

    Article  ADS  Google Scholar 

  21. A. Deppman, O.A.P. Tavares, S.B. Duarte, J.D.T. Arruda-Neto, M. Gonçalves, V.P. Likhachev, E.C. de Oliveira, Phys. Rev. C 66, 067601 (2002)

    Article  ADS  Google Scholar 

  22. E. Andrade-II, J.C.M. Menezes, S.B. Duarte, F. Garcia, P.C.R. Rossi, O.A.P. Tavares, A. Deppman, EPJ Web of Conf. 21, 10001 (2012)

    Article  Google Scholar 

  23. A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina, Phys. Rev. C 88, 024608 (2013)

    Article  ADS  Google Scholar 

  24. A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, O.A.P. Tavares, A.R. Balabekyan, N.A. Demekhina, J. Adam, F. Garcia, K. Katovsky, Phys. Rev. C 88, 064609 (2013)

    Article  ADS  Google Scholar 

  25. E. Andrade-II, G.S. Karapetyan, A. Deppman, A.R. Balabekyan, N.A. Demekhina, V. Guimarães, EPJ Web of Conf. 69, 00017 (2014)

    Article  Google Scholar 

  26. A. Deppman, G.S. Karapetyan, V. Guimarães, C. Gonzales, A.R. Balabekyan, N.A. Demekhina, Phys. Rev. C 91, 024620 (2015)

    Article  ADS  Google Scholar 

  27. E. Andrade-II, G.S. Karapetyan, A. Deppman, J.L. Bernal-Castillo, V. Guimarães, A.R. Balabekyan, J. Adam, F. Garcia, F. Guzmán, J. Phys. G Nucl. Partic. 45, 015105 (2017)

    Article  ADS  Google Scholar 

  28. A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, N.A. Demekhina, Phys. Rev. C 87, 054604 (2013)

    Article  ADS  Google Scholar 

  29. A. Deppman, E. Andrade-II, P.C.R. Rossi, F. Garcia, J.R. Maiorino, Sci. Technol. Nucl. Ins. 73, 480343 (2012)

    Google Scholar 

  30. S. Anefalos, A. Deppman, G. da Silva, J.R. Maiorino, A. dos Santos, F. Garcia, Nucl. Sci. Eng. 151, 82–87 (2005)

    Article  Google Scholar 

  31. S. Anefalos, A. Deppman, J.D.T. Arruda-Neto, V.P. Likhachev, A. dos Santos, P.R.P. Coelho, S.B. Duarte, O.A.P. Tavares, Braz. J. Phys. 34, 966–968 (2004)

    Article  ADS  Google Scholar 

  32. S. Anefalos, A. Deppman, G. Silva, J.R. Maiorino, A. dos Santos, S.B. Duarte, O.A.P. Tavares, F. Garcia, Braz. J. Phys. 35, 912–914 (2005)

    Article  ADS  Google Scholar 

  33. S. Anefalos, A. Deppman, J.D.T. Arruda-Neto, G. da Silva, J.R. Maiorino, A. dos Santos, F. Garcia, R.C. Haight, M.B. Chadwick, T. Kawano, P. Talou, AIP Conf. Proc. 769, 1299–1302 (2005)

    Article  ADS  Google Scholar 

  34. S. Anefalos Pereira, A. Deppman, G. Silva, J.R. Maiorino, A. dos Santos, S.B. Duarte, O.A.P. Tavares, F. Garcia, Nucl. Sci. Eng. 159, 102–105 (2008)

    Article  Google Scholar 

  35. V. Weisskopf, Phys. Rev. 52, 295–303 (1937)

    Article  ADS  Google Scholar 

  36. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426–450 (1939)

    Article  ADS  Google Scholar 

  37. J.M. Pearson, Hyperfine Interact. 132, 59–74 (2001)

    Article  ADS  Google Scholar 

  38. I. Dostrovsky, P. Rabinowitz, R. Bivins, Phys. Rev. 111, 1659–1676 (1958)

    Article  ADS  Google Scholar 

  39. O.A.P Tavares, M.L. Terranova, Z. Physik A - Hadrons and Nuclei 343, (1992) 407–416

  40. U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167–262 (1990)

    Article  ADS  Google Scholar 

  41. V.V. Pashkevich, Nucl. Phys. A 169, 275–293 (1971)

    Article  ADS  Google Scholar 

  42. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832–1863 (1976)

    Article  ADS  Google Scholar 

  43. W. Younes, J.A. Becker, L.A. Bernstein, P.E. Garrett, C.A. McGrath, D.P. McNabb, R.O. Nelson, G.D. Johns, W.S. Wilburn, D.M. Drake, AIP Conf. Proc. 610, 673 (2002)

    Article  ADS  Google Scholar 

  44. N.A. Demekhina, G.S. Karapetyan, Phys. At. Nucl. 71, 27–35 (2008)

    Article  Google Scholar 

  45. G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina, J. Adam, Phys. At. Nucl. 72, 911–916 (2009)

    Article  Google Scholar 

  46. H. Kudo, M. Maruyama, M. Tanikawa, T. Shinozuka, M. Fujioka, Phys. Rev. C 57, 178–188 (1998)

    Article  ADS  Google Scholar 

  47. M.C. Duijvestijn, A.J. Koning, J.P.M. Beijers, A. Ferrari, M. Gastal, J. van Klinken, R.W. Ostendorf, Phys. Rev. C 59, 776–788 (1999)

    Article  ADS  Google Scholar 

  48. G.L. Kotkin, V.G. Serbo, Collection of Problems in Classical Mechanics (International series of monographs in natural philosophy. Pergamon Press, New York, 1971)

  49. P. Frobrich, I.I. Gontchar, Langevin Description of Fusion, Deep-inelastic Collisions and Heavy-ion-induced Fission, Physics Reports (North-Holland, Amsterdam, 1998)

    Google Scholar 

  50. J. Wilczynski, Nucl. Phys. A 216, 386–394 (1973)

    Article  ADS  Google Scholar 

  51. O.A. Capurro, D.E. DiGregorio, S. Gil, D. Abriola, M. di Tada, J.O. Fernández Niello, A.O. Macchiavelli, G.V. Martí, A.J. Pacheco, J.E. Testoni, D. Tomasi, I. Urteaga, Phys. Rev. C 55, 766–774 (1997)

    Article  ADS  Google Scholar 

  52. S. Cohen, W.J. Swiatecki, Ann. Phys. 19, 67–164 (1962)

    Article  ADS  Google Scholar 

  53. S. Cohen, W.J. Swiatecki, Ann. Phys. 22, 406–437 (1963)

    Article  ADS  Google Scholar 

  54. G.A. Pik-Pichak, Sov. Phys. JETP 7, 238–241 (1958)

    Google Scholar 

  55. G.A. Pik-Pichak, Sov. Phys. JETP 15, 897–902 (1962)

    Google Scholar 

  56. R. Beringer, W.J. Knox, Phys. Rev. 121, 1195–1200 (1961)

    Article  ADS  Google Scholar 

  57. S. Cohen, F. Plasil, W.J. Swiatecki, Ann. Phys. 82, 557–596 (1974)

    Article  ADS  Google Scholar 

  58. M.G. Mustafa, P.A. Baisden, H. Chandra, Phys. Rev. C 25, 2524–2533 (1982)

    Article  ADS  Google Scholar 

  59. A.J. Sierk, Phys. Rev. C 33, 2039–2053 (1986)

    Article  ADS  Google Scholar 

  60. M. Beckerman, M. Blann, Phys. Rev. Lett. 38, 272–275 (1977)

    Article  ADS  Google Scholar 

  61. M. Beckerman, M. Blann, Phys. Rev. C 17, 1615–1631 (1978)

    Article  ADS  Google Scholar 

  62. F. Plasil, R.L. Ferguson, R.L. Hahn, F.E. Obenshain, F. Pleasonton, G.R. Young, Phys. Rev. Lett. 45, 333–336 (1980)

    Article  ADS  Google Scholar 

  63. D.J. Hinde, J.R. Leigh, J.O. Newton, W. Galster, S. Sie, Nucl. Phys. A 385, 109–132 (1982)

    Article  ADS  Google Scholar 

  64. D.J. Hinde, J.O. Newton, J.R. Leigh, R.J. Charity, Nucl. Phys. A 398, 308–324 (1983)

    Article  ADS  Google Scholar 

  65. C. Cabot1, H. Gauvin, Y. Le Beyec, H. Delagrange, J.P. Dufour, A. Fleury, Y. Llabador, J.M. Alexander, J. Phys. Colloques 41, (1980) C10-234–C10-238

  66. J.R. Leigh, D.J. Hinde, J.O. Newton, W. Galster, S.H. Sie, Phys. Rev. Lett. 48, 527–530 (1982)

    Article  ADS  Google Scholar 

  67. B. Sikora, W. Scobel, M. Beckerman, J. Bisplinghoff, M. Blann, Phys. Rev. C 25, 1446–1459 (1982)

    Article  ADS  Google Scholar 

  68. G. Guillaume, J.P. Coffin, F. Rami, P. Engelstein, B. Heusch, P. Wagner, P. Fintz, J. Barrette, H.E. Wegner, Phys. Rev. C 26, 2458–2469 (1982)

    Article  ADS  Google Scholar 

  69. H. Baba, A. Shinohara, T. Saito, N. Takahashi, A. Yokoyama, J. Phys. Soc. Jpn. 66, 998–1009 (1997)

    Article  ADS  Google Scholar 

  70. H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C 20, 992–1013 (1979)

    Article  ADS  Google Scholar 

  71. M. Blann, Phys. Rev. C 34, 2215–2216 (1986)

    Article  ADS  Google Scholar 

  72. N. Carjan, M. Kaplan, Phys. Rev. C 45, 2185–2195 (1992)

    Article  ADS  Google Scholar 

  73. J.R. Nix, Nucl. Phys. A 130, 241–292 (1969)

    Article  ADS  Google Scholar 

  74. Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227–2243 (1979)

    Article  ADS  Google Scholar 

  75. C. Chung, J.J. Hogan, Phys. Rev. C 24, 180–191 (1981)

    Article  ADS  Google Scholar 

  76. C. Chung, J.J. Hogan, Phys. Rev. C 25, 899–908 (1982)

    Article  ADS  Google Scholar 

  77. T. Fukahori, O. Iwamoto, S. Chiba, Proceedings of the Seventh International Conference on Nuclear Criticality Safety, ICNC2003, JAERI-conf, 2003-019-PT2, Japan 36, (2003) 603–608

  78. A.R. Balabekyan, G.S. Karapetyan, E. Andrade-II, A. Deppman, S.V. Gaginyan, E. Melyan, J.R. Drnoyan, V.I. Zhemenik, J. Adam, L. Zavorka, A.A. Solnyshkin, V.M. Tsoupko-Sitnikov, J. Khushvaktov, E.B. Hernández, Phys. Rev. C 100, 024616 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Motahareh Abbasi and Hamed Panjeh acknowledge the support from the Brazilian federal agency CAPES. Ramon Perez acknowledges the support from CNPq under Grant 169813/2017-7. Airton Deppman is supported by the Project INCT-FNA Proc. No. 464898/2014-5 and by FAPESP Grant 2016/17612-7. Airton Deppman is also partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (Brazil) under Grant 304244/2018-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motahareh Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Panjeh, H., Perez, R. et al. Heavy-ion-induced fission of \(^{181}\)Ta and \(^{209}\)Bi at intermediate energies by CRISP model. Eur. Phys. J. Plus 135, 845 (2020). https://doi.org/10.1140/epjp/s13360-020-00828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00828-4

Navigation