Skip to main content
Log in

Entropy quantization of Schwarzschild–de Sitter black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The canonical formalism of a spherically symmetric spacetime has been decomposition with respect to the radial coordinate r in the context of \(3 + 1\) split of spacetime. We have set up an effective Lagrangian that plays the role of independent variable couple with metric function. The surface gravity of Schwarzschild–de Sitter black hole has been quantized from the test particle moving around different energy states like Bohr’s atomic model. We have quantized the Hawking temperature and entropy of Schwarzschild–de Sitter black hole from quantization of surface gravity. We also have shown that the change of entropy reduced to zero when the boundary shrinks to very small size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space Time (Cambridge University Press, Combridge, 1973)

    Book  MATH  Google Scholar 

  2. R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  3. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.D. Bekenstein, Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  5. J.D. Bekenstein, Nuovo Cimento 11, 467 (1974)

    Google Scholar 

  6. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  7. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  8. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977)

    Article  ADS  Google Scholar 

  9. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  10. T. Padmanabhan, Phys. Rep. 406, 49 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Seiberg, E. Witten, J. High Energy Phys. 9, 032 (1999)

    Article  ADS  Google Scholar 

  12. G.T. Horowitz, New J. Phys. 7, 201 (2005)

    Article  ADS  Google Scholar 

  13. A. Ashtekar, New J. Phys. 7, 198 (2005)

    Article  ADS  Google Scholar 

  14. S. Mukherji and S.S. Pal, J. High Energy Phys. 205, 026 (2002). (arXiv: hep-th/ 0205164)

  15. A. Ashtekar and K. Krasnov, in Black holes, Gravitational Radiation and the Universe, eds. B. Iyer and B. Bhawal (Kluwer Dodrecht, 1999) 149 (arXiv: gr-qc/9804039)

  16. J. Louko, J. Makela, Phys. Rev. D 54, 4982 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Makela, Schroedinger Equation of the Schwarzschild Black Hole (arXiv: gr-qc/9602008)

  18. J. Makela, P. Repo, Phys. Rev. D 57, 4899 (1998). (arXiv: gr-qc/9708029)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Kiefer, J. Marto and P.V. Moniz, Ann. Phys. (Berlin) 18, 722 (2009). (arXiv: 0812.2848 [grqc])

  20. K. Nakamura, S. Konno, Y. Oshiro, A. Tomimatsu, Prog. Theor. Phys. 90, 861 (1993). (arXiv: gr-qc/9308029)

    Article  ADS  Google Scholar 

  21. M. Kenmoku, H. Kubotani, E. Takasugi, Y. Yamazaki, Phys. Rev. D 59, 124004 (1999). (arXiv: gr-qc/9810042)

    Article  ADS  MathSciNet  Google Scholar 

  22. B.-B. Wang, Gen. Rel. Grav. 41, 1181 (2009)

    Article  ADS  Google Scholar 

  23. J.C. Lopez-Domingues, O. Obregon, M. Sabido, Phys. Rev. D 74, 084024 (2006). (arXiv: hep-th/0607002)

    Article  ADS  MathSciNet  Google Scholar 

  24. O. Obregon, M. Sabido, V.I. Tkach, Gen. Rel. Grav. 33, 913 (2001). (arXiv: gr-qc/0003023)

    Article  ADS  Google Scholar 

  25. M. Kenmoku, H. Kubotani, E. Takasugi, Y. Yamazaki, Phys. Rev. D 57, 4925 (1998). (arXiv: gr-qc/9711039)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.A. Rahman, Commun. Theor. Phys. 71, 307 (2019)

    Article  ADS  Google Scholar 

  27. A. Matte, Can. J. Math. 5, 1 (1953)

    Article  MathSciNet  Google Scholar 

  28. P. Teyssandier, Phys. Rev. D 16, 946 (1977)

    Article  ADS  Google Scholar 

  29. L. Bel, Comput. Rend. 247, 1094 (1958)

    Google Scholar 

  30. P. Teyssandier, Phys. Rev. D 18, 1037 (1978)

    Article  ADS  Google Scholar 

  31. V. Braginsky, C. Caves, K.S. Thorne, Phys. Rev. D 15, 2047 (1977)

    Article  ADS  Google Scholar 

  32. M.A.G. Bonilla, J.M.M. Senovilla, Phys. Rev. Lett. 11, 783 (1977)

    Google Scholar 

  33. R. Jantzen, P. Carini, D. Bini, Ann. Phys. 215, 1 (1992)

    Article  ADS  Google Scholar 

  34. R. Maartens, B.A. Bassett, Class. Quantum Gr. 15, 705 (1998)

    Article  ADS  Google Scholar 

  35. S.J. Clark, R.W. Tucker, Class. Quantum Gr. 17, 4125 (2000)

    Article  ADS  Google Scholar 

  36. J.M.M. Senovilla, Mod. Phys. Lett. A 15, 159 (2000)

    Article  ADS  Google Scholar 

  37. J.M.M. Senovilla, Class. Quantum Gr. 17, 2799 (2000)

    Article  ADS  Google Scholar 

  38. M.L. Ruggiero, A. Tartaglia, Nuovo Cimento B 117, 743 (2002)

    ADS  Google Scholar 

  39. L. Iorio, D.M. Lucchesi, Class. Quantum Gr. 20, 2477 (2003)

    Article  ADS  Google Scholar 

  40. A. Zee, Phys. Rev. Lett. 55, 2379 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  41. P.A.M. Dirac, R. Soc. London Ser. A 133, 60 (1931)

    ADS  Google Scholar 

  42. I. Ciufolini, A.J. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995)

    Book  MATH  Google Scholar 

  43. B. Mashhoon; arXiv:gr-qc/0311030 (1st chapter of The Measurement of Gravitomagnetism: A Challenging Enter- prise, edited by L. Iorio (Nova Science, New York, 2007), pp. 29-39)

  44. M.A. Rahman, M.J. Hossain, M.I. Hossain, Astropart. Phys. 71, 71 (2015)

    Article  ADS  Google Scholar 

  45. E. Simanek; preprint (arXiv:1209.3791v1)

  46. W. Wilson, Phil. Mag. 29, 795 (1915)

    Article  Google Scholar 

  47. A. Sommerfeld, Ann. Physik 51, 1 (1916)

    Article  ADS  Google Scholar 

  48. I. Sakalli, M. Halilsoy, H. Pasaoglu, Astrophys. Space Sci. 340, 1555 (2012)

    Google Scholar 

  49. B. Zhang, Phys. Rev. D 92, 081501 (2015)

    Article  ADS  Google Scholar 

  50. Y.C. Ong, Gen. Relativ. Gr. 47, 88 (2015)

    Article  ADS  Google Scholar 

  51. B.R. Majhi, S. Samanta, Phys. Lett. B 770, 314 (2017)

    Article  ADS  Google Scholar 

  52. X.G. He, B.Q. Ma, Mod. Phys. Lett. A 26, 2299 (2011)

    Article  ADS  Google Scholar 

  53. E.P. Verlinde, JHEP 04, 029 (2011)

    Article  ADS  Google Scholar 

  54. X.G. He, B.Q. Ma, Chin. Phys. Lett. 27, 070402 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research is supported by Rajshahi University (No. A-1371/5/52/R.U./Sciece-32/1918-1919) from Faculty of Science, Rajshahi University, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Atiqur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A. Entropy quantization of Schwarzschild–de Sitter black hole. Eur. Phys. J. Plus 135, 783 (2020). https://doi.org/10.1140/epjp/s13360-020-00827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00827-5

Navigation