Skip to main content
Log in

Similarity solutions of converging shock waves in an ideal relaxing gas with dust particles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper demonstrates the analysis of converging shock wave in an ideal relaxing gas with dust particles via Lie group theoretic method. The Lie group of transformations is used to determine the whole range of self-similar solutions to a problem involving both planar and non-planar flows in an ideal, relaxing and dusty gas involving strong converging shocks. For the strong shock waves, all the necessary group invariance properties associated with ambient gas are presented and the general form of rate of relaxation for which the self-similar solutions exist is determined. By using the invariance surface conditions, we determine the infinitesimal generators of Lie group of transformations associated with the system of partial differential equations and on the basis of arbitrary constants occurring in the expressions for the generators, four different possible cases involving self-similar solutions are reckoned. For the different values of dust parameters, the similarity exponents are obtained numerically and comparison is made with the similarity exponents obtained from the characteristic rule (or CCW method). The effects of mass fraction of dust particle, relative specific heat and ratio of density of dust particle to density of gas, on the flow variables and shock formation, have been shown. The patterns of all flow variables behind the shock are analyzed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.F. Medici, J.S. Allen, G.P. Waite, Modeling shock waves generated by explosive volcanic eruptions. Geophys. Res. Lett. 41, 414–421 (2014)

    Article  ADS  Google Scholar 

  2. Y. BenTov, J. Swearngin, Gravitational shock waves on rotating black holes. General Relativ. Gravitat. 51, 1–41 (2019)

    Article  Google Scholar 

  3. R.S. Iyenger, Shock wave propagation from a nuclear blast. Nature 203, 746–747 (1964)

    Article  ADS  Google Scholar 

  4. R.E. Pudritz, N.K.R. Kevlahan, Shock interactions, turbulence and the origin of the stellar mass spectrum. Philos. Trans. R. Soc. A 371, 1–16 (2013)

    Article  Google Scholar 

  5. J. Yin, J. Ding, X. Luo, Numerical study on dusty shock reflection over a double wedge. Phys. Fluids 30(1), 013304 (2018)

    Article  ADS  Google Scholar 

  6. M. Chadha, J. Jena, Self-similar solutions and converging shocks in a non-ideal gas with dust particles. Int. J. Non-Linear Mech. 65, 164–172 (2014)

    Article  ADS  Google Scholar 

  7. K. Takayama, T. Saito, Shock wave/geophysical and medical applications. Annu. Rev. Fluid Mech. 36, 347–379 (2014)

    Article  ADS  Google Scholar 

  8. G. Guderley, Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmittelpunktes bzw der zylinderachse. zuftfahrtforschung 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  9. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, New York, NY, II, 1967)

    Book  Google Scholar 

  10. P. Hafner, Strong convergent shock waves near the center of convergence: a power series solution. SIAM J. Appl. Math. 48(6), 1244–1261 (1988)

    Article  MathSciNet  Google Scholar 

  11. R.B. Lazarus, Self-similar solutions for converging shocks and collapsing cavities. SIAM J. Numer. Anal. 18, 316–371 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. R.F. Chisnell, An analytic description of converging shock waves. J. Fluid Mech. 354, 357–375 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Vandyke, A.J. Guttmann, The converging shock wave from a spherical or cylindrical piston. J. Fluid Mech. 120, 451–462 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Arora, V.D. Sharma, Convergence of strong shock in a Van Der Waals gas. SIAM J. Appl. Math. 66(5), 1825–1837 (2006)

    Article  MathSciNet  Google Scholar 

  15. A. Chauhan, R. Arora, A. Tomar, Convergence of strong shock waves in a non-ideal magnetogasdynamics. Phys. Fluids 30, 116105 (2018)

    Article  ADS  Google Scholar 

  16. A. Tomar, R. Arora, A. Chauhan, Propagation of strong shock waves in a non-ideal gas. Acta Astronaut. 159, 96–104 (2019)

    Article  ADS  Google Scholar 

  17. Z.M. Boyd, S.D. Ramsey, R.S. Baty, On the existence of self-similar converging shocks for arbitrary equation of state. Q. J. Mech. Appl. Math. 70, 401–417 (2017)

    Article  Google Scholar 

  18. N. Ponchaut, H.G. Hornung, D.I. Pullin, C.A. Mouton, On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103–122 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Chauhan, R. Arora, A. Tomar, Converging strong shock wave in magnetogasdynamics under isothermal condition. Ricerche di Mathematica 1–17 (2020)

  20. N. Zhao, A. Mentrelli, T. Ruggeri, M. Sugiyama, Admissible shock waves and shock induced phase transitions in a Van der Waals fluid. Phys. Fluids 23, 86–101 (2011)

    MATH  Google Scholar 

  21. R. Arora, A. Tomar, V.P. Singh, Similarity solutions for strong shocks in a non-ideal gas. Math. Model. Anal. 17, 351–365 (2012)

    Article  MathSciNet  Google Scholar 

  22. R. Singh, J. Jena, One dimensional steepening of waves in non-ideal relaxing gas. Int. J. Nonlinear Mech. 77, 158–161 (2015)

    Article  ADS  Google Scholar 

  23. V.D. Sharma, Ch. Radha, Similarity solutions for converging shocks in relaxing gas. Int. J. Eng. Sci. 33(4), 535–553 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. S.A.V. Manickam, Ch. Radha, V.D. Sharma, Far field behaviour of waves in a vibrationally relaxing gas. Appl. Numer. Math. 45, 293–307 (2003)

    Article  MathSciNet  Google Scholar 

  25. J. Jena, V.D. Sharma, Interaction of a characteristic shock with a weak discontinuity in a relaxing gas. J. Eng. Math. 60, 43–53 (2008)

    Article  MathSciNet  Google Scholar 

  26. R. Arora, M.J. Siddiqui, V.P. Singh, Similarity method for imploding strong shocks in a non-ideal relaxing gas. Int. J. Non-Linear Mech. 57, 1–9 (2013)

    Article  ADS  Google Scholar 

  27. S. Mehla, J. Jena, Shock wave kinematics in a relaxing gas with dust particles. Zeitschrift für Naturforschung A 74, 787–798 (2019)

    Article  ADS  Google Scholar 

  28. G.I. Taylor, The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc. R. Soc. Lond. A 201, 159–174 (1950)

    Article  ADS  Google Scholar 

  29. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959)

    MATH  Google Scholar 

  30. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)

    Book  Google Scholar 

  31. G. Bluman, A. Cheviakov, Applications of Symmetry Methods to Partial Differential Equations (Springer, New York, 2010)

    Book  Google Scholar 

  32. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, New York, 1974)

    Book  Google Scholar 

  33. M.N. Ali, A.R. Seadawy, S.M. Husnine, Lie point symmetries exact solutions and conservation laws of perturbed Zakharov–Kuznetsov equation with higher-order dispersion term. Mod. Phys. Lett. A 34, 1950027 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. M.N. Ali, A.R. Seadawy, S.M. Husnine, Lie point symmetries, conservation laws and exact solutions of (1+n)-dimensional modified Zakharov–Kuznetsov equation describing the waves in plasma physics. Pramana 91, 1–9 (2018)

    Article  Google Scholar 

  35. G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  36. J.D. Logan, J.D.J. Perez, Similarity solutions for reactive shock hydrodynamics. SIAM J. Appl. Math. 39, 512–527 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author Swati Chauhan acknowledges the financial support from the “Ministry of Human Resource Development, New Delhi.” The second author Antim Chauhan acknowledges the research support from the “University Grant Commission (Govt. of India)” (Sr. No. 2121541039 with Ref No. 20/12/2015 (ii) EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Chauhan, A. & Arora, R. Similarity solutions of converging shock waves in an ideal relaxing gas with dust particles. Eur. Phys. J. Plus 135, 825 (2020). https://doi.org/10.1140/epjp/s13360-020-00823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00823-9

Navigation