Skip to main content
Log in

Phase-controlled Optical PT symmetry and asymmetric light diffraction in one- and two-dimensional optical lattices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a novel scheme for asymmetric light diffraction of a weak probe field in a one-dimensional (1D) and two-dimensional (2D) lattice occupied with cold atoms. The atoms are driven into the double-lambda-type configuration by a standing wave, two coupling laser fields and a probe. Our study suggests the proposed scheme is capable of forming an asymmetric diffraction as a result of inducing optical parity-time symmetry in both 1D and 2D lattices. Moreover, it is demonstrated that the asymmetric pattern of diffraction can be dynamically manipulated by means of adjusting the relative phase. Furthermore, it is revealed that in the case of 1D lattice (grating), intensity variation of the coupling fields has a significant impact on the intensity of diffraction orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  2. A. Regensburger et al., Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    ADS  Google Scholar 

  3. M. Wimmer et al., Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015)

    ADS  Google Scholar 

  4. X. Wang, J.H. Wu, Optical PT -symmetry and PT-antisymmetry in coherently driven atomic lattices. Opt. Express 24, 4289 (2016)

    ADS  Google Scholar 

  5. Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D.N. Christodoulides, B. He, Y. Zhang, M. Xiao, Observation of parity-time symmetry in optically induced atomic lattices. Phys. Rev. Lett. 117, 123601 (2016)

    ADS  Google Scholar 

  6. C.E. Ruter et al., Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Google Scholar 

  7. A. Guo et al., Observation of PT-symmetry breaking in complex optical potentials. Phy. Rev. Lett. 103, 093902 (2009)

    ADS  Google Scholar 

  8. B. Peng et al., Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Google Scholar 

  9. L. Chang et al., Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon 8, 524–529 (2014)

    ADS  Google Scholar 

  10. L. Feng et al., Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    ADS  Google Scholar 

  11. Z. Lin et al., Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    ADS  Google Scholar 

  12. L. Jin, X.Z. Zhang, G. Zhang, Z. Song, Reciprocal and unidirectional scattering of parity-time symmetric structures. Sci. Rep. 6, 20976 (2016)

    ADS  Google Scholar 

  13. L. Jin, P. Wang, Z. Song, One-way light transport controlled by synthetic magnetic fluxes and PT-symmetric resonators. New J. Phys. 19, 015010 (2017)

    ADS  Google Scholar 

  14. H. Hodaei, M.A. Miri, M. Heinrich, D.N. Christodoulides, M. Khajavikhan, Parity-time-symmetric microring lasers. Science 346, 975–978 (2014)

    ADS  Google Scholar 

  15. L. Feng, Z.J. Wong, R.-M. Ma, Y. Wang, X. Zhang, Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014)

    ADS  Google Scholar 

  16. H. Jing et al., PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014)

    ADS  Google Scholar 

  17. L. Jin, Z. Song, Incident direction independent wave propagation and unidirectional lasing. Phys. Rev. Lett. 121, 073901 (2018)

    ADS  Google Scholar 

  18. L. Jin, Asymmetric lasing at spectral singularities. Phy. Rev. A 97, 033840 (2018)

    ADS  Google Scholar 

  19. S. Longhi, PT-symmetric laser absorber. Phy. Rev. A 82, 031801 (2010)

    ADS  Google Scholar 

  20. Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    ADS  Google Scholar 

  21. S. Longhi, Non-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorption. Opt. Lett. 40, 1278 (2015)

    ADS  Google Scholar 

  22. R. Fleury, D. Sounas, A. Alù, An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905 (2015)

    ADS  Google Scholar 

  23. S. Longhi, Bloch oscillations in complex crystals with PT-symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    ADS  Google Scholar 

  24. H. Li, J. Dou, G. Huang, PT symmetry via electromagnetically induced transparency. Opt. Express 21, 32053 (2013)

    ADS  Google Scholar 

  25. H. Ramezani, D.N. Christodoulides, V. Kovanis, I. Vitebskiy, T. Kottos, PT-symmetric Talbot effects. Phys. Rev. Lett. 109, 033902 (2012)

    ADS  Google Scholar 

  26. Ziauddin, Y.L. Chuang, R.K. Lee, Giant Goos–Hänchen shift using PT symmetry. Phys. Rev. A 92, 013815 (2015)

    ADS  Google Scholar 

  27. Y. Cao, Y. Fu, Q. Zhou, Y. Xu, L. Gao, H. Chen, Giant Goos–Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures. Opt. Express 27, 7857 (2019)

    ADS  Google Scholar 

  28. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Optical solitons in PT periodic potentials. Phy. Rev. Lett. 100, 030402 (2008)

    ADS  Google Scholar 

  29. M. Mitsunaga, N. Imoto, Observation of an electromagnetically induced grating in cold sodium atoms. Phys. Rev. A 59, 4773–4776 (1999)

    ADS  Google Scholar 

  30. G.C. Cardoso, J.W.R. Tabosa, Electromagnetically induced gratings in a degenerate open two-level system. Phys. Rev. A 65, 033803 (2002)

    ADS  Google Scholar 

  31. B.K. Dutta, P.K. Mahapatra, Electromagnetically induced grating in a three-level 4-type system driven by a strong standing wave pump and weak probe fields. J. Phys. B 39, 1145–1157 (2006)

    ADS  Google Scholar 

  32. S.A. Carvalho, L.E.E. de Araujo, Electromagnetically induced blazed grating at low light levels. Phys. Rev. A 83, 053825 (2011)

    ADS  Google Scholar 

  33. L. Wang, F. Zhou, P. Hu, Y. Niu, S. Gong, Two-dimensional electromagnetically induced cross-grating in a four-level tripod-type atomic system. J. Phys. B 47, 225501 (2014)

    ADS  Google Scholar 

  34. T. Shui, Z. Wang, B. Yu, Efficient two-dimensional atom localization via spontaneously generated coherence and incoherent pump. Opt. Soc. Am. B 32, 210 (2015)

    ADS  Google Scholar 

  35. J. Wu, B. Ai, Two-dimensional electromagnetically induced cross-grating in a four-level N-type atomic system. J. Phys. B 48, 115504 (2015)

    ADS  Google Scholar 

  36. G.L. Cheng, W.X. Zhong, A.X. Chen, Phonon induced phase grating in quantum dot system. Opt. Express 23, 9870–9880 (2015)

    ADS  Google Scholar 

  37. G.L. Cheng, L. Cong, A.X. Chen, Two-dimensional electromagnetically induced grating via gain and phase modulation in a two-level system. J. Phys. B 49, 085501 (2016)

    ADS  Google Scholar 

  38. Y. Chen, Z. Liu, R. Wan, Two-dimensional electromagnetically induced grating in coherent atomic medium. Eur. Phys. Lett. 116, 64006 (2016)

    ADS  Google Scholar 

  39. V.G. Arkhipkin, S.A. Myslivets, Coherent manipulation of the Raman-induced gratings in atomic media. Phys. Rev. A 93, 013810 (2016)

    ADS  Google Scholar 

  40. G.L. Cheng, A.X. Chen, Squeezing induced high-efficiency diffraction grating in two-level system. Opt. Express 25, 4483–4492 (2017)

    ADS  Google Scholar 

  41. V.G. Arkhipkin, S.A. Myslivets, One- and two-dimensional Raman-induced diffraction gratings in atomic media. Phys. Rev. A 98, 013838 (2018)

    ADS  Google Scholar 

  42. L. Zhao, Electromagnetically induced polarization grating. Sci. Rep. 8, 3073 (2018)

    ADS  Google Scholar 

  43. A.H. Ranjbar, A. Mortezapour, Electromagnetically induced gain-phase grating in a double V-type quantum system. J. Opt. Soc. Am. A 36, 549–555 (2019)

    ADS  Google Scholar 

  44. T. Shui, L. Li, X. Wang, W.X. Yang, One- and two-dimensional electromagnetically induced gratings in an Er3+-doped yttrium aluminum garnet crystal. Sci. Rep. 10, 4019 (2020)

    ADS  Google Scholar 

  45. Y.M. Liu, F. Gao, C.H. Fan, J.H. Wu, Asymmetric light diffraction of an atomic grating with PT symmetry. Opt. Lett. 42, 4283–4286 (2017)

    ADS  Google Scholar 

  46. F. Gao, Y.M. Liu, X.D. Tian, C.L. Cui, J.H. Wu, Intrinsic link of asymmetric reflection and diffraction in non-Hermitian gratings. Opt. Express 26, 33818–33829 (2018)

    ADS  Google Scholar 

  47. S.C. Tian, R.G. Wan, L.J. Wang, S.L. Shu, H. Lu, X. Zhang, C.Z. Tong, J.L. Feng, M. Xiao, L.J. Wang, Asymmetric light diffraction of two-dimensional electromagnetically induced grating with PT symmetry in asymmetric double quantum wells. Opt. Express 26, 32918 (2018)

    ADS  Google Scholar 

  48. T. Shui, W.X. Yang, S. Liu, L. Li, Z. Zhu, Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman–Nath regime. Phys. Rev. A 97, 033819 (2018)

    ADS  Google Scholar 

  49. Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, M. Xiao, Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations. Laser Photonics Rev. 12, 1800155 (2018)

    ADS  Google Scholar 

  50. T. Shui, W.X. Yang, L. Li, Perfectly asymmetric Raman-Nath diffraction in disordered atomic gratings. Opt. Express 27, 24693–24704 (2019)

    ADS  Google Scholar 

  51. Y.M. Liu, F. Gao, J.H. Wu, M. Artoni, G.C. La Rocca, Lopsided diffractions of distinct symmetries in two-dimensional non-Hermitian optical gratings. Phys. Rev. A 100, 043801 (2019)

    ADS  Google Scholar 

  52. M. Abbas, A. Khurshid, I. Hussain, A.N.D. Ziauddin, Investigation of PT- and PT-antisymmetry in two dimensional (2D) optical lattices. Opt. Express 28, 8003 (2020)

    ADS  Google Scholar 

  53. Z. Zhang, Y. Zhang, J. Feng, J. Sheng, Y. Zhang, M. Xiao, Parity-time-symmetric optical lattices in atomic configurations, in Parity-Time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol. 280, ed. by D. Christodoulides, J. Yang (Springer, Singapore, 2018)

    Google Scholar 

  54. X.Y. Zhu, Y.L. Xu, Y. Zou, X.C. Sun, C. He, M.H. Lu, X.P. Liu, Y.F. Chen, Asymmetric diffraction based on a passive parity-time grating. Appl. Phys. Lett. 109, 111101 (2016)

    ADS  Google Scholar 

  55. S.C. Tian, R.G. Wan, L.J. Wang, S.L. Shu, H.Y. Lu, X. Zhang, C.Z. Tong, M. Xiao, L.J. Wang, Parity-time symmetry in coherent asymmetric double quantum wells. Sci. Rep. 9, 2607 (2019)

    ADS  Google Scholar 

  56. A.A. Naeimi, E. Darabi, A. Mortezapour, G. Naeimi, Phase-controlled electromagnetically induced symmetric and asymmetric grating in an asymmetric three-coupled quantum well. App. Opt. 58, 9662 (2019)

    ADS  Google Scholar 

  57. D.Z. Wang, J.Y. Gao, Effect of Doppler broadening on optical gain without inversion in a four-level model. Phys. Rev. A 52, 3201 (1995)

    ADS  Google Scholar 

  58. H.Y. Ling, Y.Q. Li, M. Xiao, Electromagnetically induced grating: Homogeneously broadened medium. Phys. Rev. A 57, 1338 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mortezapour.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeimi, A.A., Darabi, E., Mortezapour, A. et al. Phase-controlled Optical PT symmetry and asymmetric light diffraction in one- and two-dimensional optical lattices. Eur. Phys. J. Plus 135, 791 (2020). https://doi.org/10.1140/epjp/s13360-020-00817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00817-7

Navigation