Skip to main content
Log in

Two-phase simulation of magnetic field effect on the ferrofluid forced convection in a pipe considering Brownian diffusion, thermophoresis, and magnetophoresis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a two-phase model is used to study Fe3O4/H2O magnetic nanofluid laminar forced convection in a uniformly heated pipe and under the influence of a quadrupole magnetic field. The extended model considers the three primary transport mechanisms of magnetic nanoparticles in the carrier liquid, namely Brownian diffusion, thermophoresis, and magnetophoresis. Governing equations are solved numerically utilizing a SIMPLE-based finite volume method. Computations are performed for various important parameters including magnetic and Reynolds numbers, particle size and volume fraction, and the magnetic source length. Numerical results show that some vortices are formed due to magnetic field which leads to heat transfer augmentation. It is found that in the sections where the magnetic field is applied, the particle distribution is almost uniform, and also the radial component of Brownian, thermophoresis, and magnetophoresis fluxes are comparable. Far away from the magnetic field, there is an obvious non-uniform particle distribution because of the thermophoretic diffusion. Numerical results indicate that the heat transfer enhancement is an increasing function of the magnetic number, particle size, and volume fraction, while a decreasing function of the magnetic source length and Reynolds number. Multiple magnetic sources provide higher heat transfer rates and hydro-thermal performance. The obtained simulation results reveal that such a magnetic field can increase the heat transfer rate more than three times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

c :

Specific heat at constant pressure (J kg−1 K−1)

D :

Pipe diameter (m)

\( D_{\text{B}} \) :

Brownian diffusivity (m2 s−1)

\( d_{\text{p}} \) :

Particle diameter (m)

\( D_{\text{T}} \) :

Thermophoretic diffusivity (m2 s−1)

H :

Magnetic field intensity (A m−1)

\( J_{\text{p}} \) :

Particle mass flux vector (kg m−2 s−1)

k :

Thermal conductivity (W m−1 K−1)

\( k_{\text{B}} \) :

Boltzmann constant (\( 1.380648 \times 10^{ - 23} \) J K−1)

\( L_{\text{m}} \) :

Magnetic source length (m)

M s :

Saturation magnetization (A m−1)

\( {\text{Mn}} = \frac{{\mu_{\text{o}} H_{\text{o}}^{2} D^{2} }}{{\rho_{\text{f}} \alpha_{\text{f}}^{2} }} \) :

Magnetic number (−)

\( m_{\text{p}} \) :

Magnetic moment of nanoparticles (A m2)

\( {\text{Nu}} = \frac{1}{{T_{\text{w}}^{ *} \left( {z^{ *} } \right) - T_{\text{m}}^{ *} \left( {z^{ *} } \right)}} \) :

Nusselt number (−)

p :

Pressure (Pa)

\( { \Pr } = \frac{{\left( {\mu c} \right)_{\text{f}} }}{{k_{\text{f}} }} \) :

Prandtl number (−)

q″:

Heat flux (W m−2)

\( q^{ *} = \frac{{q_{\text{w}}^{''} D}}{{k_{\text{f}} T_{\text{in}} }} \) :

Non-dimensional heat flux (−)

r :

Radial coordinate (m)

\( {\text{Re}} = \frac{{V_{\text{in}} D}}{{\upsilon_{\text{f}} }} \) :

Reynolds number (−)

T :

Temperature (K)

\( T_{\text{m}} \) :

Mean fluid temperature (K)

\( V_{\text{r}} , V_{\text{z}} \) :

Velocity components (m s−1)

z :

Axial coordinate (m)

\( \alpha_{\text{f}} \) :

Thermal diffusivity (m2 s−1)

\( \mu \) :

Dynamic viscosity (Pa s−1)

\( \mu_{\text{B}} \) :

Bohr magneton (\( 9.274 \times 10^{ - 24} \) A m2)

\( \mu_{\text{o}} \) :

Vacuum permeability (TmA−1)

\( \xi = \frac{{\mu_{\text{o}} m_{\text{p}} H}}{{k_{\text{B}} T}} \) :

Langevin parameter (−)

\( \rho \) :

Density (kg m−3)

\( \phi \) :

Particle volume fraction (−)

\( \chi \) :

Magnetic susceptibility (−)

f:

Base fluid

ff:

Ferrofluid

in:

Inlet

p:

Nanoparticle

w:

Wall

References

  1. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  2. M.U. Sajid, H.M. Ali, Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew. Sustain. Energy Rev. 103, 556–592 (2019). https://doi.org/10.1016/j.rser.2018.12.057

    Article  Google Scholar 

  3. J.S. Mehta, R. Kumar, H. Kumar, H. Garg, Convective heat transfer enhancement using ferrofluid: a review. J. Therm. Sci. Eng. Appl. (2018). https://doi.org/10.1115/1.4037200

    Article  Google Scholar 

  4. S. Odenbach, Ferrofluids—magnetically controlled suspensions, in: colloids surfaces a physicochem. Eng. Asp. (2003). https://doi.org/10.1016/S0927-7757(02)00573-3

    Article  Google Scholar 

  5. R.E. Rosensweig, Ferrohydrodynamics, vol. 116 (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  6. M. Bahiraei, M. Hangi, Flow and heat transfer characteristics of magnetic nanofluids: a review. J. Magn. Magn. Mater. 374, 125–138 (2015). https://doi.org/10.1016/j.jmmm.2014.08.004

    Article  ADS  Google Scholar 

  7. M.A. Khairul, E. Doroodchi, R. Azizian, B. Moghtaderi, Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers. Manag. 149, 660–674 (2017). https://doi.org/10.1016/j.enconman.2017.07.064

    Article  Google Scholar 

  8. R.J. Yang, H.H. Hou, Y.N. Wang, L.M. Fu, Micro-magnetofluidics in microfluidic systems: a review. Sens. Actuators B Chem. 224, 1–15 (2016). https://doi.org/10.1016/j.snb.2015.10.053

    Article  Google Scholar 

  9. Q. Li, W. Lian, H. Sun, Y. Xuan, Investigation on operational characteristics of a miniature automatic cooling device. Int. J. Heat Mass Transf. 51, 5033–5039 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.031

    Article  MATH  Google Scholar 

  10. Y. Xuan, W. Lian, Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl. Therm. Eng. 31, 1487–1494 (2011). https://doi.org/10.1016/j.applthermaleng.2011.01.033

    Article  Google Scholar 

  11. K. Zimmermann, I. Zeidis, V. Böhm, S. Greiser, J. Popp, Ferrofluid-based flow manipulation and locomotion systems. J. Intell. Mater. Syst. Struct. 21, 1559–1562 (2010). https://doi.org/10.1177/1045389X09354789

    Article  Google Scholar 

  12. H. Shokrollahi, Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater. Sci. Eng. C 33, 2476–2487 (2013). https://doi.org/10.1016/j.msec.2013.03.028

    Article  Google Scholar 

  13. V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 7, 1700845 (2018). https://doi.org/10.1002/adhm.201700845

    Article  Google Scholar 

  14. W. Huang, X. Wang, Ferrofluids lubrication: a status report. Lubr. Sci. 28, 3–26 (2016). https://doi.org/10.1002/ls.1291

    Article  Google Scholar 

  15. H. Urreta, G. Aguirre, P. Kuzhir, L.N. Lopez de Lacalle, Seals based on magnetic fluids for high precision spindles of machine tools. Int. J. Precis. Eng. Manuf. 19, 495–503 (2018). https://doi.org/10.1007/s12541-018-0060-9

    Article  Google Scholar 

  16. C. Huang, J. Yao, T. Zhang, Y. Chen, H. Jiang, D. Li, Damping applications of ferrofluids: a review. J. Magn. 22, 109–121 (2017). https://doi.org/10.4283/JMAG.2017.22.1.109

    Article  Google Scholar 

  17. M. Goharkhah, M. Ashjaee, Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J. Magn. Magn. Mater. 362, 80–89 (2014). https://doi.org/10.1016/j.jmmm.2014.03.025

    Article  ADS  Google Scholar 

  18. S. Shyam, B. Mehta, P.K. Mondal, S. Wongwises, Investigation into the thermo-hydrodynamics of ferrofluid flow under the influence of constant and alternating magnetic field by InfraRed Thermography. Int. J. Heat Mass Transf. 135, 1233–1247 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.050

    Article  Google Scholar 

  19. A. Shakiba, K. Vahedi, Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J. Magn. Magn. Mater. 402, 131–142 (2016). https://doi.org/10.1016/j.jmmm.2015.11.039

    Article  ADS  Google Scholar 

  20. A. Khosravi, M. Malekan, M.E.H. Assad, Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renew. Energy 134, 54–63 (2019). https://doi.org/10.1016/j.renene.2018.11.015

    Article  Google Scholar 

  21. F. Fadaei, M. Shahrokhi, A. Molaei Dehkordi, Z. Abbasi, Forced-convection heat transfer of ferrofluids in a circular duct partially filled with porous medium in the presence of magnetic field. J. Magn. Magn. Mater. 475, 304–315 (2019). https://doi.org/10.1016/j.jmmm.2018.11.032

    Article  ADS  Google Scholar 

  22. F. Fadaei, M. Shahrokhi, A. Molaei Dehkordi, Z. Abbasi, Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. J. Magn. Magn. Mater. 429, 314–323 (2017). https://doi.org/10.1016/j.jmmm.2017.01.046

    Article  ADS  Google Scholar 

  23. M.H. Hekmat, K.K. Ziarati, Effects of nanoparticles volume fraction and magnetic field gradient on the mixed convection of a ferrofluid in the annulus between vertical concentric cylinders. Appl. Therm. Eng. 152, 844–857 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.124

    Article  Google Scholar 

  24. Y. Sheikhnejad, R. Hosseini, M. Saffar-Avval, Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube. J. Magn. Magn. Mater. 389, 136–143 (2015). https://doi.org/10.1016/j.jmmm.2015.04.029

    Article  ADS  Google Scholar 

  25. A. Favakeh, M.A. Bijarchi, M.B. Shafii, Ferrofluid droplet formation from a nozzle using alternating magnetic field with different magnetic coil positions. J. Magn. Magn. Mater. 498, 166134 (2020). https://doi.org/10.1016/j.jmmm.2019.166134

    Article  Google Scholar 

  26. M.A. Bijarchi, M.B. Shafii, Experimental investigation on the dynamics of on-demand ferrofluid drop formation under a pulse-width-modulated nonuniform magnetic field. Langmuir (2020). https://doi.org/10.1021/acs.langmuir.0c00097

    Article  Google Scholar 

  27. M.A. Bijarchi, A. Favakeh, M.B. Shafii, The effect of a non-uniform pulse-width modulated magnetic field with different angles on the swinging ferrofluid droplet formation. J. Ind. Eng. Chem. 84, 106–119 (2020). https://doi.org/10.1016/j.jiec.2019.12.026

    Article  Google Scholar 

  28. M. Zarei Saleh Abad, M. Ebrahimi-Dehshali, M.A. Bijarchi, M.B. Shafii, A. Moosavi, Visualization of pool boiling heat transfer of magnetic nanofluid. Heat Transf. Asian Res. 48, 2700–2713 (2019). https://doi.org/10.1002/htj.21498

    Article  Google Scholar 

  29. A. Bozhko, T. Tynjälä, Influence of gravitational sedimentation of magnetic particles on ferrofluid convection in experiments and numerical simulations. J. Magn. Magn. Mater. 289, 281–284 (2005). https://doi.org/10.1016/j.jmmm.2004.11.080

    Article  ADS  Google Scholar 

  30. H. Aminfar, M. Mohammadpourfard, S. Ahangar Zonouzi, Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J. Magn. Magn. Mater. 327, 31–42 (2013). https://doi.org/10.1016/j.jmmm.2012.09.011

    Article  ADS  Google Scholar 

  31. A. Asadi, A. Hossein Nezhad, F. Sarhaddi, T. Keykha, Laminar ferrofluid heat transfer in presence of non-uniform magnetic field in a channel with sinusoidal wall: a numerical study. J. Magn. Magn. Mater. 471, 56–63 (2019). https://doi.org/10.1016/j.jmmm.2018.09.045

    Article  ADS  Google Scholar 

  32. M. Bahiraei, M. Hangi, A. Rahbari, A two-phase simulation of convective heat transfer characteristics of water–Fe3O4 ferrofluid in a square channel under the effect of permanent magnet. Appl. Therm. Eng. 147, 991–997 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.011

    Article  Google Scholar 

  33. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006). https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  34. W. Nessab, H. Kahalerras, B. Fersadou, D. Hammoudi, Numerical investigation of ferrofluid jet flow and convective heat transfer under the influence of magnetic sources. Appl. Therm. Eng. 150, 271–284 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.164

    Article  Google Scholar 

  35. M.Z.J.J. Chalmers, Magnetic Cell Separation, vol. 32, 1st edn. (Elsevier, Amsterdam, 2007)

    Google Scholar 

  36. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998). https://doi.org/10.1080/08916159808946559

    Article  ADS  Google Scholar 

  37. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000). https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  38. H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571 (1952). https://doi.org/10.1063/1.1700493

    Article  ADS  Google Scholar 

  39. J.C. Maxwell, A treatise on electricity and magnetism. Nature 7, 478–480 (1873). https://doi.org/10.1038/007478a0

    Article  MATH  Google Scholar 

  40. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, 1996). https://doi.org/10.1016/j.applthermaleng.2011.03.022

    Book  Google Scholar 

  41. L. Syam-Sundar, M.T. Naik, K.V. Sharma, M.K. Singh, T.C. Siva-Reddy, Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Therm. Fluid Sci. 37, 65–71 (2012). https://doi.org/10.1016/j.expthermflusci.2011.10.004

    Article  Google Scholar 

  42. H. Yamaguchi, <[H._Yamaguchi__(auth.)]_Engineering_Fluid_Mechanic(BookZZ.org).pdf> (Springer, Dordrecht, 2008)

    Google Scholar 

  43. M.I. Shliomis, in Thermal Nonequilibrium Phenomena in Fluid Mixtures (Springer, Berlin, Heidelberg, 2002), pp. 355–371

  44. M.I. Shliomis, B.L. Smorodin, Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater. 252, 197–202 (2002). https://doi.org/10.1016/S0304-8853(02)00712-6

    Article  ADS  Google Scholar 

  45. S.Y. Motlagh, H. Soltanipour, Natural convection of Al2O3–water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int. J. Therm. Sci. 111, 310–320 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.08.022

    Article  Google Scholar 

  46. R.L. Webb, N.H. Kim, Principles of Enhanced Heat Transfer (Tylayer Fr. Routledge, New York, 2005)

    Google Scholar 

  47. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corporation, New York, 1980), p. 58

    MATH  Google Scholar 

  48. M. Asfer, B. Mehta, A. Kumar, S. Khandekar, P.K. Panigrahi, Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int. J. Heat Fluid Flow 59, 74–86 (2016). https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009

    Article  Google Scholar 

  49. M. Corcione, M. Cianfrini, A. Quintino, Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int. J. Therm. Sci. 71, 182–195 (2013). https://doi.org/10.1016/j.ijthermalsci.2013.04.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Soltanipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanipour, H. Two-phase simulation of magnetic field effect on the ferrofluid forced convection in a pipe considering Brownian diffusion, thermophoresis, and magnetophoresis. Eur. Phys. J. Plus 135, 702 (2020). https://doi.org/10.1140/epjp/s13360-020-00725-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00725-w

Navigation