Skip to main content
Log in

Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we have introduced a new generalized momentum operator which takes simultaneously into account the extended uncertainty principle, the concept of position-dependent mass and fractal gradient arguments. The associated Schrödinger equation is obtained and analyzed for the case of potentials characterized by inverse-power terms with arbitrary strengths. It was observed that, in contrast to what is obtained in the literature, the corresponding quantum systems are characterized by positive-bound energy spectrum similar to what occurred in quasiparticles theory in condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Kugami, Analysis on Fractals (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  2. R.S. Strichartz, Differential Equations on Fractals (Princeton University Press, Princeton, Oxford, 2006)

    MATH  Google Scholar 

  3. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1982)

    MATH  Google Scholar 

  4. J. Feder, Fractals (Plenum Press, New York, 1988)

    MATH  Google Scholar 

  5. G. Eyink, Quantum field-theory models on fractal spacetime. Comm. Math. Phys. 125, 613–636 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  6. N. Laskin, Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  7. N. Laskin, Fractional quantum mechanics. Phys. Lett. A 268, 268–305 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  8. N. Laskin, Fractional Schrodinger equation. Phys. Rev. E66, 056108 (2002)

    ADS  MathSciNet  Google Scholar 

  9. G. Calcagni, G. Nardelli, M. Scalisi, Quantum mechanics in fractional and other anomalous spacetimes. J. Math. Phys. 53, 102110–102125 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  10. H. Kroger, Fractal geometry in quantum mechanics, field theory and spin systems. Phys. Rept. 323, 81–181 (2000)

    ADS  MathSciNet  Google Scholar 

  11. M.A. Lohe, A. Thilagam, Quantum mechanical models in fractional dimensions. J. Phys. A: Math. Gen. 37, 6181 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  12. M.A. Lohe, An algebraic formulation of quantum mechanics in fractional dimensions. Rept. Math. Phys. 57, 131–145 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  13. R.A. El-Nabulsi, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A476, 20190729 (2020)

    MathSciNet  MATH  Google Scholar 

  14. R.A. El-Nabulsi, Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 1–10 (2020)

    ADS  Google Scholar 

  15. R.A. El-Nabulsi, Spectrum of Schrodinger Hamiltonian operator with singular inverted singular inverted complex and Kratzer’s molecular potentials in fractional dimension. Eur. Phys. J. P. 133, 277 (2018)

    Google Scholar 

  16. R.A. El-Nabulsi, Time-fractional Schrodinger equation from path integral and its implications in quantum dots and semiconductors. Eur. Phys. J. P. 133, 394 (2018)

    Google Scholar 

  17. R.A. El-Nabulsi, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  18. R.A. El-Nabulsi, Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. P. 134, 192 (2019)

    Google Scholar 

  19. R.A. El-Nabulsi, Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Solids 127, 224–230 (2019)

    ADS  Google Scholar 

  20. J.-H. He, Fractal calculus and its geometrical explanation. Res. Phys. 10, 272–276 (2018)

    Google Scholar 

  21. F.B. Tatom, The relationship between fractional calculus and fractals. Fractals 03, 217 (1995)

    MathSciNet  MATH  Google Scholar 

  22. V.E. Tarasov, Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)

    ADS  MATH  Google Scholar 

  23. V.E. Tarasov, Fractional hydrodynamic equations for fractal media. Ann. Phys. 318, 286–307 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  24. J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  25. R.A. El-Nabulsi, Geostrophic flow and wind driven ocean currents based on dimensionality of the space medium. Pure. appl. Geophys. 176, 2739–2750 (2019)

    Google Scholar 

  26. M. Ostoja-Starzewski, Towards thermomechanics of fractal media. Z. Ang. Math. Phys. 58, 1085–1096 (2007)

    MathSciNet  MATH  Google Scholar 

  27. M. Ostoja-Starzewski, Towards thermoelasticity of fractal media. J. Therm. Stresses 30, 889–896 (2007)

    MATH  Google Scholar 

  28. M. Ostoja-Starzewski, On turbulence in fractal porous media. Z. Ang. Math. Phys. 59, 1111–1117 (2008)

    MathSciNet  MATH  Google Scholar 

  29. M. Ostoja-Starzewski, Continuum mechanics models of fractal porous media: integral relations and extremum principles. J. Mech. Mater. Struct. 4, 901–912 (2009)

    Google Scholar 

  30. M. Ostoja-Starzewski, Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)

    MATH  Google Scholar 

  31. M. Ostoja-Starzewski, J. Li, Fractal materials, beams and fracture mechanics. Z. Ang. Math. Phys. 60, 1194–1205 (2009)

    MathSciNet  MATH  Google Scholar 

  32. M. Ostoja-Starzewski, Electromagnetism on anisotropic fractals. Z. Ang. Math. Phys. 64, 381–390 (2013)

    MathSciNet  MATH  Google Scholar 

  33. M. Ostoja-Starzewski, J. Li, H. Joumaa, P.N. Demmie, From fractal media to continuum mechanics. Z. Ang. Math. Phys. 94, 373–401 (2014)

    MathSciNet  MATH  Google Scholar 

  34. V.E. Tarasov, Fractional generalization of Liouville equations. Chaos 14, 123–127 (2004)

    ADS  Google Scholar 

  35. V.E. Tarasov, Fractional systems and fractional Bogoliubov hierarchy equations. Phys. Rev. E 71, 011102 (2005)

    ADS  MathSciNet  Google Scholar 

  36. R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific Publishing Company, Berlin, 2011)

    MATH  Google Scholar 

  37. N.E. Cho, A.M.K. Aouf, Some applications of fractional calculus operators to a certain subclass of analytic 128 functions with negative coefficients. Tr. J. Math. 20, 553–562 (1996)

    MATH  Google Scholar 

  38. A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Phys. A: Stat. Mech. Appl. 265, 535–546 (1999)

    Google Scholar 

  39. S. Butera, M.D. Paola, A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 350, 146–158 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  40. R.A. El-Nabulsi, D.F.M. Torres, Fractional actionlike variational problems. J. Math. Phys. 49(5), 053521–053528 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  41. R.A. El-Nabulsi, Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos Solitons Fract. 42, 2614–2622 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  42. R.A. El-Nabulsi, Fractional quantum Euler–Cauchy equation in the Schrodinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics. Mod. Phys. Lett. B 23(2009), 3369–3386 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  43. R.A. El-Nabulsi, Fractional derivatives generalization of Einstein’s field equations. Ind. J. Phys. 87(2013), 195–200 (2013)

    Google Scholar 

  44. R.A. El-Nabulsi, Gravitons in fractional action cosmology. Int. J. Theor. Phys. 51, 3978–3992 (2012)

    MathSciNet  MATH  Google Scholar 

  45. R.A. El-Nabulsi, Fractional dynamics, fractional weak bosons masses and physics beyond the standard model. Chaos Solitons Fract. 4, 2262–2270 (2009)

    MathSciNet  Google Scholar 

  46. R.A. El-Nabulsi, Modifications at large distances from fractional and fractal arguments. Fractals 18, 185–190 (2010)

    MathSciNet  MATH  Google Scholar 

  47. R.A. El-Nabulsi, Fractional functional with two occurrences of integrals and asymptotic optimal change of drift in the Black-Scholes model. Acta Math. Viet. 40, 689–703 (2015)

    MathSciNet  MATH  Google Scholar 

  48. R.A. El-Nabulsi, Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents. Chaos Solitons Fract. 42, 2384–2398 (2009)

    ADS  MathSciNet  Google Scholar 

  49. R.A. El-Nabulsi, Fractional field theories from multidimensional fractional variational problems. Int. J. Mod. Geom. Meth. Mod. Phys. 5, 863–892 (2008)

    MathSciNet  MATH  Google Scholar 

  50. R.A. El-Nabulsi, G.-C. Wu, Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order (α, β) and dynamical fractional integral exponent. Afr. Disp. J. Math. 13, 45–61 (2012)

    MathSciNet  MATH  Google Scholar 

  51. R.A. El-Nabulsi, Glaeske-Kilbas-Saigo fractional integration and fractional Dixmier trace. Acta Math. Viet. 37, 149–160 (2012)

    MathSciNet  MATH  Google Scholar 

  52. R.A. El-Nabulsi, Dirac operator of order 2/3 from Glaeske-Kilbas-Saigo fractional integral. Funct. Anal. Approx. Comput. 7, 15–28 (2015)

    MathSciNet  Google Scholar 

  53. F.H. Stillinger, Axiomatic basis for spaces with noninteger dimension. J. Math. Phys. 18, 1224–1234 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  54. V.E. Tarasov, Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 55, 083510 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  55. L.J. Garay, Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–166 (1995)

    ADS  Google Scholar 

  56. A.D.K. Plato, C.N. Hughes, M.S. Kim, Gravitational effects in quantum mechanics. Contemp. Phys. 57, 477–495 (2016)

    ADS  Google Scholar 

  57. M.C. Braidotti, Z.H. Musslimani, C. Conti, Generalized uncertainty principle and analogue of quantum gravity in optics. Phys. D 338, 34–41 (2017)

    Google Scholar 

  58. S. Das, R.B. Mann, Planck scale effects in some low energy quantum phenomena. Phys. Lett. B 704, 596–599 (2011)

    ADS  Google Scholar 

  59. S.M. Amirfakhrian, Spinless particle in a magnetic field under minimal length scenario. Z. Naturforsch. 71, 481–485 (2016)

    ADS  Google Scholar 

  60. G.T. Einevoll, Operator ordering in effective mass theory for heterostructures II. Strained systems. Phys. Rev. B 42, 3497 (1990)

    ADS  Google Scholar 

  61. P. Harrison, Quantum Wells, Wires and Dots (Wiley, New York, 2000)

    Google Scholar 

  62. R.A. El-Nabulsi, A new approach to Schrodinger equation with position-dependent mass and its implications in quantum dots and semiconductors. J. Phys. Chem. Sol. 140, 109384 (2020)

    Google Scholar 

  63. R.A. El-Nabulsi, A generalized self-consistent approach to study position-dependent mass in semiconductors organic heterostructures and crystalline impure materials. Phys. E: Low Dim. Syst. Nanostruct. 134, 114295 (2020)

    Google Scholar 

  64. R.A. El-Nabulsi, Generalized uncertainty principle in astrophysics from Fermi statistical physics arguments. Int. J. Theor. Phys. 59, 2083–2090 (2020)

    MathSciNet  MATH  Google Scholar 

  65. R.A. El-Nabulsi, Some implications of three generalized uncertainty principles in statistical mechanics of an ideal gas. Eur. Phys. J. P. 135, 34 (2020)

    Google Scholar 

  66. F.Q. Zhao, X.X. Liang, S.L. Ban, Influence of the spatially dependent effective mass on bound polarons in finite parabolic quantum wells. Eur. Phys. J. B 33, 3–8 (2003)

    ADS  Google Scholar 

  67. M. Barranco, M. Pi, S.M. Gatica, E.S. Hernandez, J. Navarro, Structure and energetics of mixed 4He3He drops. Phys. Rev. B 56, 8997 (1997)

    ADS  Google Scholar 

  68. F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Effective mass of one 4He atom in liquid 3He. Phys. Rev. B 50, 4248 (1994)

    ADS  Google Scholar 

  69. J. Yu, S.-H. Dong, G.-H. Sun, Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential. Phys. Lett. A 322, 290–297 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  70. S.H. Dong, J.J. Pena, C. Pacheco-Garcia, J. Garcia-Ravelo, Algebraic approach to the position-dependent mass Schrödinger for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)

    ADS  MATH  Google Scholar 

  71. S.-H. Dong, M. Lozada-Cassou, Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential. Phys. Lett. A 337, 313–320 (2005)

    ADS  MATH  Google Scholar 

  72. G.H. Sun, D. Popov, O. Camacho-Nieto, S.H. Dong, Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well. Chin. Phys. B 24, 100303 (2015)

    ADS  Google Scholar 

  73. B.J. Falaye, F.A. Serrano, S.-H. Dong, Fisher information for the position-dependent mass Schrödinger system. Phys. Lett. A 380, 267–271 (2016)

    ADS  MATH  Google Scholar 

  74. J. Yu, S.-H. Dong, Exactly solvable potentials for the Schrodinger equation with spatially dependent mass. Phys. Lett. A 325, 194–198 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  75. M. Izadparast, S.H. Mazharimousavi, Generalized extended momentum operator. Phys. Script. 95, 075220 (2020)

    Google Scholar 

  76. N.A. Torkhov, Method to determine the interface’s fractal dimensions of metal-semiconductor electric contacts from their static instrumental characteristics. J. Synch. Investig. 4, 45–58 (2010)

    Google Scholar 

  77. J.A. Monsoriu, F.R. Villatoro, M.J. Marin, J. Perez, L. Monreal, Quantum fractal superlattices. Am. J. Phys. 74, 831 (2006)

    ADS  Google Scholar 

  78. I. Mojzes, C. Dominkovics, G. Harsanyi, Heat treatment parameters effecting the fractal dimensions of AuGe metallization on GaAs. Appl. Phys. Lett. 91, 073107 (2007)

    ADS  Google Scholar 

  79. R.K. Kumar, A. Mishchenko, X. Chen, S. Pezzini, G.H. Auton, L.A. Ponomarenko, U. Zeitler, L. Eaves, V.I. Fal’ko, A.K. Geim, Higher-order fractal states in graphene superlattices. Proc. Nat. Acad. Sci. 15, 5135–5139 (2018)

    ADS  Google Scholar 

  80. S.-H. Kim, C.K. Kim, K. Nahm, Superfluid fraction of a charged boson fluid at non-integer dimensions and superconducting films. Phys. Stat. Solid B 236, 129–134 (2003)

    ADS  Google Scholar 

  81. T. Naito, H. Yamamoto, K. Konishi, K. Kubo, T. Nakamura, H. Moyama, Critical current density of superconductors with different fractal dimensions. Adv. Mater. Sci. 1, 15–21 (2016)

    Google Scholar 

  82. M.M. Mola, R. Haddad, S. Hill, Fractal flux jumps in an organic superconducting crystal. Solid State Commun. 137, 611–614 (2006)

    ADS  Google Scholar 

  83. I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, C. Brukner, Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393–397 (2012)

    Google Scholar 

  84. E.G. Barbagiovanni, R.N.C. Filho, Quantum confinement in nonadditive space with a spatially dependent effective mass for Si and Ge quantum wells. Phys. E: Low-Dim. Syst. Nanostruct. 63, 14–20 (2014)

    ADS  Google Scholar 

  85. E.G. Barbagiovanni, D.J. Lockwood, N.L. Rowell, R.N. Costa Filho, I. Berbezier, G. Amiard, L. Favre, A. Ronda, M. Faustini, D. Grosso, Role of quantum confinement in luminescence efficiency of group IV nanostructures. J. Appl. Phys. 115, 044311 (2014)

    ADS  Google Scholar 

  86. H. Kawaura, T. Sakamoto, T. Baba, Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 76, 3810–3812 (2020)

    ADS  Google Scholar 

  87. O. Von Roos, Position-dependent effective mass in semiconductor theory. Phys. Rev. B 27, 7547 (1983)

    ADS  Google Scholar 

  88. A.M. Ishkhanyan, Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity. Eur. Phys. J. P133, 83 (2018)

    Google Scholar 

  89. C.A. Onate, O. Ebomwonyi, D.B. Olanrewaju, Application of Schrödinger equation in quantum well of Cu2ZnSnS4 quaternary semiconductor alloy. Heliyon 6, e04062 (2020)

    Google Scholar 

  90. S.-H. Dong, W.-C. Qiang, K. Garcia-Ravelo, Analytical approximations to the Schrödinger equation for a second Poschl–Teller like potential with centrifugal term. Int. J. Mod. Phys. A 23, 1537–1544 (2008)

    ADS  MATH  Google Scholar 

  91. M. Aygun, The energy eigenvalues of the exponential cosine screened Coulomb potential with magnetic field. Bitlis. Eren. Univ. J. Sci. Technol. 3, 32–38 (2013)

    Google Scholar 

  92. C.A. Onate, M.C. Onyeaju, A.N. Ikot, O. Ebomwonyi, Eigen solutions and entropic system for Hellmann potential in the presence of the Schrödinger equation. Eur. Phys. J. P132, 462 (2017)

    Google Scholar 

  93. C.A. Onate, Bound state solutions of the Schrödinger equation with second Poschl–Teller like potential model and the vibration partition function, mean energy and mean free energy. Chin. J. Phys. 54, 165–174 (2016)

    MathSciNet  Google Scholar 

  94. X. Song, An effective quark-antiquark potential for both heavy and light mesons. J. Phys. G: Nucl. Part. Phys. 17, 49 (1991)

    ADS  Google Scholar 

  95. A. Schulze-Halberg, Quasi-exactly solvable singular fractional power potentials emerging from the triconfluent Heun equation. Phys. Scr. 65, 373 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  96. T. Das, Bound state solutions of square root power law potential-wavefunction ansatz method on D-dimensional Schrödinger equation. Electron. J. Theor. Phys. 13, 199–206 (2016)

    Google Scholar 

  97. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing (Dover, New York, 1972)

    MATH  Google Scholar 

  98. T.A. Ishkhanyan, V.P. Krainov, A.M. Ishkhanyan, A conditionally integrable bi-confluent Heun potential involving inverse square root and centrifugal barrier terms. Z. Naturforsch. A 73, 407–414 (2018)

    ADS  Google Scholar 

  99. S.-H. Dong, G.-H. Sun, The Schrödinger equation with a Coulomb plus inverse-square potential in D dimensions. Phys. Script. 70, 94–97 (2004)

    ADS  MATH  Google Scholar 

  100. B. Basu-Mallick, K.S. Gupta, Bound states in one dimensional quantum N-body systems with inverse square interaction. Phys. Lett. A 292, 36–42 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  101. M. Bawin, S.A. Coon, The singular inverse square potential, limit cycles and self-adjoint extensions. Phys. Rev. A 67, 042712 (2003)

    ADS  Google Scholar 

  102. J. Denschlag, G. Umshaus, J. Schiedmayer, Probing a singular potential with cold atoms: a neutral atom and a charged wire. Phys. Rev. Lett. 81, 737 (1998)

    ADS  Google Scholar 

  103. H. Camblong, L.N. Epele, H. Fanchiotti, C.A.G. Canal, Renormalization of the inverse square potential. Phys. Rev. Lett. 85, 1590 (2000)

    ADS  Google Scholar 

  104. S.A. Coon, B. Holstein, Anomalies in quantum mechanics: the 1/r2 potential. Am. J. Phys. 70, 513–519 (2002)

    ADS  MATH  Google Scholar 

  105. V. Bargmann, On the number of bound states in a central field of force. Proc. Nat. Acad. Sci. 38, 961–966 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  106. F. Calogero, Upper and lower limits for the number of bound states in a given central potential. Commun. Math. Phys. 1, 80–88 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  107. A. Lopez-Ortega, New conditionally exactly solvable inverse power law potentials. Phys. Script. 90, 085202 (2015)

    ADS  Google Scholar 

  108. E.A. Etoga, M. Ema’a, P.E. Abiama, G.H. Ben-Bolie, Klein-Gordon equation with four inverse power terms potentials. Mod. Phys. Lett. A 35, 2050080 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  109. A.V. Rokhlenko, Positive-bound energy states in quantum mechanics. J. Exp. Theor. Phys. 26, 547–551 (1968)

    ADS  Google Scholar 

  110. A.M. Awin, Positive energy bound states. Fortschr. Phys. 39, 131–158 (1991)

    MathSciNet  Google Scholar 

  111. M.V. Tkach, OYu. Pytiuk, O.M. Voitsekhivska, J.O. Seti, Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature. Condens. Matter Phys. 20, 43706 (2017)

    Google Scholar 

  112. R.A. El-Nabulsi, A generalized self-consistent approach to study position-dependent mass in semiconductors organic heterostructures and crystalline impure materials. Phys. E: Low. Dim. Syst. Nanostruct. 124, 114295 (2020)

    Google Scholar 

  113. R.A. El-Nabulsi, Quantum Lc-circuit satisfying the Schrodinger-Fisher-Kolmogorov equation and quantization of Dc–Pumped Josephson parametric amplifier. Phys. E: Low. Dim. Syst. Nanostruct. 112, 115–120 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the kind referee for the invaluable and positive suggestions, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments. Eur. Phys. J. Plus 135, 693 (2020). https://doi.org/10.1140/epjp/s13360-020-00717-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00717-w

Navigation