Skip to main content
Log in

Investigation of surface effects on the natural frequency of a functionally graded cylindrical nanoshell based on nonlocal strain gradient theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In submicron structures, because of surface and small-scale effects, the classical continuum theory does not lead to accurate results. In order to use this method in the study of the mechanical behavior of such structures, surface elasticity and size-dependent theories have been introduced. In this paper, by simultaneously applying the theories of Gurtin–Murdoch surface elasticity and the nonlocal strain gradient, the vibration behavior of a functionally graded nanoshell has been investigated. To this end, the governing motion equations and related boundary conditions are extracted utilizing Hamilton’s principle and the first-order shear deformation theory of shell and then will be solved by the generalized differential quadrature method. The effects of surface properties such as surface elastic properties, residual surface stress, and surface mass density have been studied. Also, a comparative study between different continuum mechanics theories, with and without surface effects, at different boundary conditions and values of length-to-radius ratio and FG gradient index is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(1941), 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  2. M.E. Gurtin, A.I. Murdoch, Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    MATH  Google Scholar 

  3. A. Assadi, Size dependent forced vibration of nanoplates with consideration of surface effects. Appl. Math. Model. 37(5), 3575–3588 (2013)

    MathSciNet  MATH  Google Scholar 

  4. W. Wang, P. Li, F. Jin, J. Wang, Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)

    Google Scholar 

  5. P. Raghu, K. Preethi, A. Rajagopal, J.N. Reddy, Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects. Compos. Struct. 139, 13–29 (2016)

    Google Scholar 

  6. M. Ghadiri, N. Shafiei, H. Safarpour, Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst. Technol. 23(4), 1045–1065 (2017)

    Google Scholar 

  7. F. Ebrahimi, M.R. Barati, Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. Eur. Phys. J. Plus 132(1), 19 (2017)

    Google Scholar 

  8. M. Ghadiri, M. Soltanpour, A. Yazdi, M. Safi, Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation. Appl. Phys. A 122(5), 520 (2016)

    ADS  Google Scholar 

  9. S. Hosseini-Hashemi, I. Nahas, M. Fakher, R. Nazemnezhad, Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225(6), 1555–1564 (2014)

    MathSciNet  MATH  Google Scholar 

  10. M. Ghadiri, N. Shafiei, A. Akbarshahi, Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Appl. Phys. A Mater. Sci. Process. 122(7), 1–19 (2016)

    Google Scholar 

  11. H.-L. Lee, W.-J. Chang, Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys. 108(9), 093503 (2010)

    ADS  Google Scholar 

  12. X.W. Lei, T. Natsuki, J.X. Shi, Q.Q. Ni, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B Eng. 43(1), 64–69 (2012)

    Google Scholar 

  13. W.-M. Zhang, K.-M. Hu, B. Yang, Z.-K. Peng, G. Meng, Effects of surface relaxation and reconstruction on the vibration characteristics of nanobeams. J. Phys. D Appl. Phys. 49(16), 165304 (2016)

    ADS  Google Scholar 

  14. M. Ghadiri, A. Rajabpour, A. Akbarshahi, Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects. Appl. Math. Model. 50, 676–694 (2017)

    MathSciNet  MATH  Google Scholar 

  15. H. Rouhi, R. Ansari, M. Darvizeh, Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Appl. Math. Model. 40(4), 3128–3140 (2016)

    MathSciNet  MATH  Google Scholar 

  16. H. Rouhi, R. Ansari, M. Darvizeh, Analytical treatment of the nonlinear free vibration of cylindrical nanoshells based on a first-order shear deformable continuum model including surface influences. Acta Mech. 227(6), 1767–1781 (2016)

    MathSciNet  MATH  Google Scholar 

  17. S.S. Nanthakumar, N. Valizadeh, H.S. Park, T. Rabczuk, Surface effects on shape and topology optimization of nanostructures. Comput. Mech. 56(1), 97–112 (2015)

    MathSciNet  MATH  Google Scholar 

  18. A. Farajpour, M.R.H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227(7), 1849–1867 (2016)

    MathSciNet  MATH  Google Scholar 

  19. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  20. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    ADS  Google Scholar 

  21. R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    MathSciNet  MATH  Google Scholar 

  22. W.T. Koiter, Couple-stresses in the theory of elasticity, I & II, no. B67 (1964), pp. 17–44

  23. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  24. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Google Scholar 

  25. E.C. Aifantis, On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    MATH  Google Scholar 

  26. M. Ghadiri, A. Rajabpour, A. Akbarshahi, Non-linear vibration and resonance analysis of graphene sheet subjected to moving load on a visco-Pasternak foundation under thermo-magnetic-mechanical loads: an analytical and simulation study. Measurement 124, 103–119 (2018)

    ADS  Google Scholar 

  27. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    MATH  Google Scholar 

  29. L. Lu, X. Guo, J. Zhao, Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    MathSciNet  MATH  Google Scholar 

  30. M. Simsek, Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    MathSciNet  MATH  Google Scholar 

  31. F. Ebrahimi, M.R. Barati, Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur. Phys. J. Plus 131(8), 1–22 (2016)

    Google Scholar 

  32. K. Ghorbani, A. Rajabpour, M. Ghadiri, Determination of carbon nanotubes size-dependent parameters: molecular dynamics simulation and nonlocal strain gradient continuum shell model. Mech. Based Des. Struct. Mach. (2019). https://doi.org/10.1080/15397734.2019.1671863

    Article  Google Scholar 

  33. K. Mohammadi, M. Mahinzare, K. Ghorbani, M. Ghadiri, Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory. Microsyst. Technol. 24(2), 1133–1146 (2018)

    Google Scholar 

  34. K. Mohammadi, A. Rajabpour, M. Ghadiri, Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation. Comput. Mater. Sci. 148, 104–115 (2018)

    Google Scholar 

  35. M. Mahinzare, K. Mohammadi, M. Ghadiri, A. Rajabpour, Size-dependent effects on critical flow velocity of a SWCNT conveying viscous fluid based on nonlocal strain gradient cylindrical shell model. Microfluid. Nanofluidics 21(7), 123 (2017)

    Google Scholar 

  36. K. Ghorbani, K. Mohammadi, A. Rajabpour, M. Ghadiri, Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin-Murdoch and nonlocal strain gradient theories. J. Phys. Chem. Solids 129, 140–150 (2019)

    ADS  Google Scholar 

  37. N. Vu-Bac, T. Lahmer, X. Zhuang, T. Nguyen-Thoi, T. Rabczuk, A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv. Eng. Softw. 100(October), 19–31 (2016)

    Google Scholar 

  38. M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég et al., Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 34, 24–34 (2014)

    Google Scholar 

  39. R. Kandasamy, R. Dimitri, F. Tornabene, Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Compos. Struct. 157, 207–221 (2016)

    Google Scholar 

  40. Z.G. Song, L.W. Zhang, K.M. Liew, Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. Int. J. Mech. Sci. 115–116, 339–347 (2016)

    Google Scholar 

  41. H. Safarpour, K. Mohammadi, M. Ghadiri, M.M. Barooti, Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM. Int. J. Struct. Stab. Dyn. 18(10), 1850123 (2018)

    MathSciNet  Google Scholar 

  42. A. Witvrouw, A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492, 255–260 (2005)

    Google Scholar 

  43. M. Shojaeian, Y.T. Beni, Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A Phys. 232, 49–62 (2015)

    Google Scholar 

  44. Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, TiNi-based thin films in MEMS applications: a review. Sens. Actuators A Phys. 112(2), 395–408 (2004)

    Google Scholar 

  45. M. Rahaeifard, M.H. Kahrobaiyan, M.T. Ahmadian, Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2009), pp. 539–544

  46. M. Ghadiri, M. Mahinzare, N. Shafiei, K. Ghorbani, On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments. Microsyst. Technol. 23(10), 4989–5001 (2017)

    Google Scholar 

  47. P. Lu, L.H. He, H.P. Lee, C. Lu, Thin plate theory including surface effects. Int. J. Solids Struct. 43(16), 4631–4647 (2006)

    MATH  Google Scholar 

  48. C.F. Lü, C.W. Lim, W.Q. Chen, Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46(5), 1176–1185 (2009)

    MATH  Google Scholar 

  49. Y.T. Beni, F. Mehralian, H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Google Scholar 

  50. H. Zeighampour, Y.T. Beni, I. Karimipour, Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory. Microfluid. Nanofluidics 21(5), 85 (2017)

    Google Scholar 

  51. F. Mehralian, Y.T. Beni, M.K. Zeverdejani, Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Phys. B Condens. Matter 514, 61–69 (2017)

    ADS  Google Scholar 

  52. C. Shu, B.E. Richards, High resolution of natural convection in a square cavity by generalized differential quadrature, in Proceedings of the 3rd International Conference on Advances in Numeric Methods in Engineering: Theory and Application, Swansea, UK (1990), pp. 978–985

  53. C. Shu, Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation. University of Glasgow (1991)

  54. R. Bellman, J. Casti, Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    MathSciNet  MATH  Google Scholar 

  55. R. Bellman, B.G. Kashef, J. Casti, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10(1), 40–52 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  56. H. SafarPour, M. Ghadiri, Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid. Nanofluidics 21(2), 22 (2017)

    Google Scholar 

  57. H. Guo, X. Zhuang, T. Rabczuk, A deep collocation method for the bending analysis of Kirchhoff plate. Comput. Mater. Contin. 59(2), 433–456 (2019)

    Google Scholar 

  58. E. Samaniego et al., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  59. C.T. Loy, K.Y. Lam, J.N. Reddy, Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41(3), 309–324 (1999)

    MATH  Google Scholar 

  60. A. Alibeigloo, M. Shaban, Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity. Acta Mech. 224(7), 1415 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Rajabpour or Majid Ghadiri.

Appendix

Appendix

The coefficients in Eq. (13) are defined as follows:

$$ \begin{aligned} A_{11}^{*} & = \int\limits_{ - h/2}^{h/2} {\left( {\lambda + 2\mu } \right){\text{d}}z} + \left( {\lambda^{s + } + 2\mu^{s + } } \right){ + }\left( {\lambda^{s - } + 2\mu^{s - } } \right) \\ B_{11}^{*} & = \int\limits_{ - h/2}^{h/2} {\left( {\lambda + 2\mu } \right)zdz} + \frac{h}{2}\left[ {\left( {\lambda^{s + } + 2\mu^{s + } } \right) - \left( {\lambda^{s - } + 2\mu^{s - } } \right)} \right] \\ D_{11}^{*} & = \int\limits_{ - h/2}^{h/2} {\left( {\lambda + 2\mu } \right)z^{2} dz} + \frac{{h^{2} }}{4}\left[ {\left( {\lambda^{s + } + 2\mu^{s + } } \right) + \left( {\lambda^{s - } + 2\mu^{s - } } \right)} \right] \\ A_{12}^{*} & = \int\limits_{ - h/2}^{h/2} {\lambda {\text{d}}z} + \left( {\lambda^{s + } + \tau^{s + } } \right) + \left( {\lambda^{s - } + \tau^{s - } } \right) \\ B_{12}^{*} & = \int\limits_{ - h/2}^{h/2} {\lambda z{\text{d}}z} + \frac{h}{2}\left[ {\left( {\lambda^{s + } + \tau^{s + } } \right) - \left( {\lambda^{s - } + \tau^{s - } } \right)} \right] \\ D_{12}^{*} & = \int\limits_{ - h/2}^{h/2} {\lambda z^{2} {\text{d}}z} + \frac{{h^{2} }}{4}\left[ {\left( {\lambda^{s + } + \tau^{s + } } \right) + \left( {\lambda^{s - } + \tau^{s - } } \right)} \right] \\ A_{66}^{*} & = \int\limits_{ - h/2}^{h/2} {\mu {\text{d}}z} + \left( {\mu^{s + } + \mu^{s - } } \right) - \frac{1}{2}\left( {\tau^{s + } + \tau^{s - } } \right) ,\quad A_{66} = \int\limits_{ - h/2}^{h/2} {\mu {\text{d}}z} \\ B_{66}^{*} & = \int\limits_{ - h/2}^{h/2} {\mu z{\text{d}}z} + \frac{h}{2}\left( {\mu^{s + } - \mu^{s - } } \right) - \frac{h}{4}\left( {\tau^{s + } - \tau^{s - } } \right) \\ D_{66}^{*} & = \int\limits_{ - h/2}^{h/2} {\mu z^{2} {\text{d}}z} + \frac{{h^{2} }}{4}\left( {\mu^{s + } + \mu^{s - } } \right) - \frac{{h^{2} }}{8}\left( {\tau^{s + } + \tau^{s - } } \right) \\ a_{1} & = \left( {\tau^{s + } + \tau^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }f\left( z \right){\text{d}}z} + \left( {\tau^{s + } - \tau^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }\frac{1}{2}{\text{d}}z} \\ b_{1} & = \left( {\tau^{s + } + \tau^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }zf\left( z \right){\text{d}}z} + \left( {\tau^{s + } - \tau^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }\frac{z}{2}{\text{d}}z} \\ a_{2} & = \left( {\rho^{s + } + \rho^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }f\left( z \right){\text{d}}z} + \left( {\rho^{s + } - \rho^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }\frac{1}{2}{\text{d}}z} \\ b_{2} & = \left( {\rho^{s + } + \rho^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }zf\left( z \right){\text{d}}z} + \left( {\rho^{s + } - \rho^{s - } } \right)\int\limits_{ - h/2}^{h/2} {\frac{\lambda }{2\mu }\frac{z}{2}{\text{d}}z} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, K., Rajabpour, A., Ghadiri, M. et al. Investigation of surface effects on the natural frequency of a functionally graded cylindrical nanoshell based on nonlocal strain gradient theory. Eur. Phys. J. Plus 135, 701 (2020). https://doi.org/10.1140/epjp/s13360-020-00712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00712-1

Navigation