Skip to main content
Log in

Continuum and undefine hole burning regions via pulse propagation in a four-level Doppler broadened atomic system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have theoretically examined and modified the spectral hole burning (SHB) in a tripod-type four-level Doppler broadened atomic medium. We have investigated a narrow spectral hole (Lamb dip) in the absorption spectrum, and subluminal/superluminal light propagation in the dispersion spectrum through Doppler broadened atomic medium as well. Furthermore, a theoretical demonstration is presented for the group index, advance/delay time and group velocity. Moreover, we investigate that the detuning of the control fields considerably shift the SHB at either side of the resonance line. For the first time, we have investigated the undefined hole burning regions by showing that the group index, advance/delay time, and group velocity are undefined in these regions. The results may have important applications in the developing technology of quantum optics and will open up new ways to investigate different phenomena inside the hole burning regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.R. Bennett, Phys. Rev. 126, 580 (1962)

    ADS  Google Scholar 

  2. W.E. Lamb, Phys. Rev. 134, A1429 (1964)

    ADS  Google Scholar 

  3. A. Renn, U.P. Wild, A. Rebane, J. Phys. Chem. A 106, 3045 (2002)

    Google Scholar 

  4. T. Bottger, G.J. Pryde, R.L. Cone, Opt. Lett. 28, 200 (2003)

    ADS  Google Scholar 

  5. M. Nilsson, L. Rippe, S. Kroll, R. Klieber, D. Suter, Phys. Rev. B 70, 214116 (2004)

    ADS  Google Scholar 

  6. J.J. Berry, M.J. Stevens, R.P. Mirin, K.L. Silverman, Appl. Phys. Lett. 88, 061114 (2006)

    ADS  Google Scholar 

  7. P.H. Lee, M.L. Skolnick, Appl. Phys. Lett. 10, 303–305 (1967)

    ADS  Google Scholar 

  8. A. Szabo, Phys. Rev. B 11, 4512–515 (1975)

    ADS  Google Scholar 

  9. J.H. Wu, X.J. Wei, D.F. Wang, Y. Chen, J.Y. Gao, J. Opt. B 6, 54 (2004)

    ADS  Google Scholar 

  10. P. Dong, J.Y. Gao, Phys. Lett. A 265, 52–57 (2000)

    ADS  Google Scholar 

  11. S.E. Schwartz, T.Y. Tan, Appl. Phys. Lett. 10, 47 (1967)

    Google Scholar 

  12. W.R. Babbitt, A. Lezama, T.W. Mossberg, Phys. Rev. B 39, 1987–1992 (1989)

    ADS  Google Scholar 

  13. B.K. Kharlamov, R.I. Personov, L.A. Bykovskaya, Opt. Commun. 12, 191–193 (1974)

    ADS  Google Scholar 

  14. S.A. Elnabi, Optik 125, 1620–1624 (2014)

    ADS  Google Scholar 

  15. Z.-H. Xiao, J.-H. Wu, H.-F. Zhang, J.-Y. Gao, Phys. Lett. A 310, 363–371 (2003)

    ADS  Google Scholar 

  16. M. Idrees, B.A. Bacha, M. Javed, S.A. Ullah, Laser Phys. 27, 045202 (2017)

    ADS  Google Scholar 

  17. A. Imamoglu, S.E. Harris, Opt. Lett. 14, 1344 (1989)

    ADS  Google Scholar 

  18. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    ADS  Google Scholar 

  19. X. Wang, A. Miranowicz, H.-R. Li, F.-L. Li, F. Nori, Phys. Rev. A 98, 023821 (2018)

    ADS  Google Scholar 

  20. K.D. Quoc, V.C. Long, W. Leonski, Phys. Scr. T147, 014008 (2012)

    ADS  Google Scholar 

  21. J.H. Wu, X.G. Wei, D.F. Wang, Y. Chen, J.Y. Gao, Opt. B Quantum Semiclass. Opt. 6, 54–58 (2004)

    ADS  Google Scholar 

  22. T.L. Harris, Y. Sun, W.R. Babbitt, R.L. Cone, J.A. Ritcey, R.W. Equall, Opt. Lett. 27, 85–87 (2000)

    ADS  Google Scholar 

  23. A. Gorokhovski, R.K. Kaarli, L.A. Rebane, JETP Lett. 20, 21–218 (1974)

    ADS  Google Scholar 

  24. H. De-Vries, D.A. Wiersrna, Phys. Rev. Lett. 36, 91–94 (1976)

    ADS  Google Scholar 

  25. Y. Li, P. Hemmer, C. Kim, H. Zhang, L.V. Wang, Opt. Express 16, 14862–14874 (2008)

    ADS  Google Scholar 

  26. W.E. Moerner, Persistent Spectral Hole Burning: Science and Applications (Springer, Berlin, 1988)

    Google Scholar 

  27. P. Robin, V. Silvia, Photosynth. Res. 101, 245–266 (2009)

    Google Scholar 

  28. M.M. Kash, V.A. Sautenkov, Phys. Rev. Lett. 82, 5229 (1999)

    ADS  Google Scholar 

  29. A. Kasapi, M. Jain, G.Y. Yin, S.E. Haris, Phys. Rev. Lett. 74, 2447 (1995)

    ADS  Google Scholar 

  30. A. Iqbal, N. Khan, B.A. Bacha, AUr Rahman, A. Ahmad, Phys. Lett. A 381, 3134–3140 (2017)

    ADS  Google Scholar 

  31. B.A. Bacha, T. Khan, N. Khan, S.A. Ullah, M.S.A. Jabar, A.U. Rahman, Eur. Phys. J. Plus 133, 509 (2018)

    Google Scholar 

  32. S.A. Shah, S. Ullah, M. Idrees, B.A. Bacha, Arif Ullah, Phys. Scr. 94, 035401 (2019)

    ADS  Google Scholar 

  33. A. Raczynski, J. Zaremba, S. Zielinska-Kaniasty, Opt. Commun. 217, 275–280 (2003)

    ADS  Google Scholar 

  34. K. Slowik, A. Raczynski, J. Zaremba, S. Zielinska-Kaniasty, Opt. Commun. 217(285), 2392–2396 (2012)

    ADS  Google Scholar 

  35. V. Ivanov, Y. Rozhdestvensky, Phys. Rev. A 81, 033809 (2010)

    ADS  Google Scholar 

  36. V. Ivanov, Y. Rozhdestvensky, K.-A. Suominen, Phys. Rev. A 90, 063802 (2014)

    ADS  Google Scholar 

  37. H. Iqbal, M. Idrees, M. Javed, B.A. Bacha, S. Khan, S.A. Ullah, J. Russ. Laser Res. 38, 426–436 (2017)

    Google Scholar 

  38. H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, Berlin, 1999)

    Google Scholar 

  39. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  40. G.S. Agarwal, S. Dasgupta, Phys. Rev. A 70, 023802 (2004)

    ADS  Google Scholar 

  41. S. Ahmad, A. Ahmad, B.A. Bacha, A.A. Khan, M.S. Abdul Jabar, Eur. Phys. J. Plus 132, 506 (2017)

    Google Scholar 

  42. N. Khan, B.A. Bacha, A. Iqbal, A.U. Rahman, A. Afaq, Phys. Rev. A 96, 013848 (2017)

    ADS  Google Scholar 

  43. M.S. Abdul Jabar, Bakht Amin Bacha, Iftikhar Ahmad, Chin. Phys. B 25, 084205 (2016)

    ADS  Google Scholar 

  44. G.S. Agarwal, T.N. Dey, Phys. Rev. A 68, 063816 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

Zhejiang Provincial Natural Science Foundation of China (Grant No. LD18A040001), National Key Research and Development Program of China (No. 2017YFA0304202), National Natural Science Foundation of China (NSFC) (Grants No. 11674284), Fundamental Research Funds for the Center Universities (No. 2019FZA3005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Idrees or Li-Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, M., Kalsoom, H., Bacha, B.A. et al. Continuum and undefine hole burning regions via pulse propagation in a four-level Doppler broadened atomic system. Eur. Phys. J. Plus 135, 698 (2020). https://doi.org/10.1140/epjp/s13360-020-00705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00705-0

Navigation