Skip to main content
Log in

Optical band gap engineering of ZnO nanophosphors via Cu incorporation for ultraviolet–violet LED

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The tunability of optical band gap and augmentation of luminescence intensity of Cu-doped ZnO nanophosphors for ultraviolet and violet light-emitting diodes grown by microwave-assisted aqueous solution technique were studied at room temperature for various doping concentrations. The UV–Vis spectral analysis demonstrated that band gap engineering of ZnO nanophosphors can be performed through incorporation of Cu ions into the ZnO matrix by controlling the dopant content. The photoluminescence investigations revealed that a strong UV emission centred around 346–348 nm and an intense violet band comprising of two peaks centred about 403 nm and 424 nm occur in the absence of any other band. A thorough study of the defect-related PL spectra elucidated that these violet peaks originated from energetically more probable deep-acceptor zinc vacancy and shallow-donor zinc interstitial defect transitions. The luminescence intensity of nanophosphors can be optimized through modification of intrinsic defect density by adjusting Cu concentration in the ZnO host. The results are significant for ZnO-based photoluminescence cutting-edge technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Kucharski, T. Sochacki, B. Lucznik, M. Bockowski, Growth of bulk GaN crystals. J. Appl. Phys. 128, 050902 (2020)

    ADS  Google Scholar 

  2. R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor, Synthesis and characterization of undoped, Al and/or Ho doped ZnO thin films. Ceram. Int. 39, 5535 (2013)

    Google Scholar 

  3. Y. Xu, B. Bo, X. Gao, Z. Qiao, Passivation effect on ZnO films by SF6 plasma treatment. Crystals 9, 236 (2019)

    Google Scholar 

  4. J. Lv, C. Li, Z. Chai, Defect luminescence and its mediated physical properties in ZnO. J. Lumin. 208, 225 (2019)

    Google Scholar 

  5. Z. Ma, F. Ren, X. Ming, Y. Long, A.A. Volinsky, Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 12, 196 (2019)

    ADS  Google Scholar 

  6. N. Kamarulzaman, M.F. Kasim, R. Rusdi, Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res. Lett. 10, 346 (2015)

    ADS  Google Scholar 

  7. J. Truong, M. Hansen, B. Szychowski, T. Xie, M.C. Daniel, J.I. Hahm, Spatially correlated, single nanomaterial-level structural and optical profiling of Cu-doped ZnO nanorods synthesized via multifunctional silicides. Nanomaterials 8, 222 (2018)

    Google Scholar 

  8. G. Chen, S. Jian, J. Juang, Surface analysis and optical properties of Cu-doped ZnO thin films deposited by radio frequency magnetron sputtering. Coatings 8, 266 (2018)

    Google Scholar 

  9. M. Fang, C.M. Tang, Z.W. Liu, Microwave-assisted hydrothermal synthesis of Cu doped ZnO single crystal nanoparticles with modified photoluminescence and confirmed ferromagnetism. J. Electron. Mater. 47, 1390 (2018)

    ADS  Google Scholar 

  10. F. Ghahramanifard, A. Rouhollahi, O. Fazlolahzadeh, Electrodeposition of Cu-doped p-type ZnO nanorods; Effect of cu-doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlatt. Microstruct. 114, 1 (2018)

    ADS  Google Scholar 

  11. Z.N. Kayani, S. Iram, R. Rafi, Effect of Cu-doping on the structural, magnetic and optical properties of ZnO thin films. Appl. Phys. Mater. Sci. Process 124, 468 (2018)

    ADS  Google Scholar 

  12. S. Ouidette, D. Djamel, H. Laid, Structural and optical properties of Cu doped ZnO aerogels synthesized in supercritical ethanol. J. Porous Mater. 25, 595 (2018)

    Google Scholar 

  13. M.D. Tyona, R.U. Osuji, P.U. Asogwa, S.B. Jambure, F.I. Ezema, Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J. Solid State Electrochem. 21, 2629 (2017)

    Google Scholar 

  14. B.P. Devi, S.K. Das, Y. Tai, Investigation of the effect of copper nanoparticles incorporated in ZnO buffer layer of inverted organic solar cell. Adv. Mater. Lett. 8, 1150 (2017)

    Google Scholar 

  15. B.K. Das, T. Das, K. Parashar, Structural, bandgap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying. J. Mater. Sci. Mater. Electron 28, 15127 (2017)

    Google Scholar 

  16. S.A. Ahmed, Effect of annealing temperature and dopant concentration on the structure, optical, and magnetic properties of Cu-doped ZnO nanopowders. J. Mater. Sci. Mater. Electron 28, 3733 (2017)

    Google Scholar 

  17. R.K. Shukla, A. Srivastava, N. Kumar, A. Pandey, M. Pandey, Optical and sensing properties of Cu doped ZnO nanocrystalline thin films. J. Nanotechnol. 2015, 172864 (2015)

    Google Scholar 

  18. M. Suja, S.B. Bashar, M.M. Morshed, J. Liu, Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy. ACS Appl. Mater. Interfaces 7, 8894 (2015)

    Google Scholar 

  19. A. Ghosh, N. Kumari, A. Bhattacharjee, Investigations on structural and optical properties of Cu doped ZnO. J. Nanosci. Nanotechnol. 2, 485 (2014)

    Google Scholar 

  20. M. Mittal, M. Sharma, O.P. Pandey, UV–visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 110, 386 (2014)

    ADS  Google Scholar 

  21. A. Rahmati, A.B. Sirgani, M. Molaei, M. Karimipour, Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route. Eur. Phys. J. Plus 129, 250 (2014)

    Google Scholar 

  22. C.H. Xia, F. Wang, C.L. Hu, Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. J. Alloy. Compd. 589, 604 (2014)

    Google Scholar 

  23. L. Chow, O. Lupan, G. Cha, H. Khallaf, L.K. Ono, B.R. Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sens. Actuators A 189, 399 (2013)

    Google Scholar 

  24. L. Hu, L. Zhu, H. He, Y. Guo, G. Pan, J. Jiang, Y. Jin, L. Sun, Z. Ye, Colloidal chemically fabricated ZnO: Cu-based photodetector with extended UV-visible detection waveband. Nanoscale 5, 9577 (2013)

    ADS  Google Scholar 

  25. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946 (2012)

    ADS  Google Scholar 

  26. N.Z. Razali, A.H. Abdullah, M.J. Haron, Synthesis of Cuo and Zno nanoparticles and Cuo doped Zno nanophotocatalysts. Adv. Mater. Res. 364, 402 (2012)

    Google Scholar 

  27. J.H. Zheng, J.L. Song, Q. Jiang, J.S. Lian, Optical properties of Cu-doped ZnO nanoparticles experimental and first-principles theory research. J. Mater. Sci. Mater. Electron. 23, 1521 (2012)

    Google Scholar 

  28. A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloys Compd. 509, 5349 (2011)

    Google Scholar 

  29. O. Lupan, T. Pauporté, T.L. Bahers, B. Viana, I. Ciofini, Wavelength-emission tuning of ZnO nanowire-based light-emitting diodes by Cu doping: experimental and computational insights. Adv. Funct. Mater. 21, 3564 (2011)

    Google Scholar 

  30. R. Elilarassi, G. Chandrasekaran, Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. J. Mater. Sci. Mater. Electron. 21, 1168 (2010)

    Google Scholar 

  31. M. Ferhat, A. Zaoui, R. Ahuja, Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94, 142502 (2009)

    ADS  Google Scholar 

  32. H. Zhu, J. Iqbal, H. Xu, D. Yu, Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process. J. Chem. Phys. 129, 124713 (2008)

    ADS  Google Scholar 

  33. K.S. Ahn, T. Deutsch, Y. Yan, C.S. Jiang, C.L. Perkins, J. Turner, M. Al-Jassim, Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J. Appl. Phys. 102, 023517 (2007)

    ADS  Google Scholar 

  34. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology 15, 856 (2004)

    ADS  Google Scholar 

  35. S.M. Zhou, X.H. Zhang, X.M. Meng, K. Zou, X. Fan, S.K. Wu, S.T. Lee, The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires. Nanotechnology 15, 1152 (2004)

    ADS  Google Scholar 

  36. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622 (2002)

    ADS  Google Scholar 

  37. G.R. Khan, Crystallographic, structural and compositional parameters of Cu-ZnO nanocrystallites. Appl. Phys. A 126, 311 (2020)

    ADS  Google Scholar 

  38. R. Khokhra, B. Bharti, H.N. Lee, R. Kumar, Visible and UV photo-detection in ZnO nano- structured thin films via simple tuning of solution method. Sci. Rep. 7, 15032 (2017)

    ADS  Google Scholar 

  39. A.H. Shah, E. Manikandan, M.B. Ahmed, V. Ganesan, Enhanced bioactivity of Ag/ZnO nanorods-a comparative antibacterial study. J. Nanomed. Nanotechnol. 4, 1000168 (2013)

    Google Scholar 

  40. R.S. Zeferino, M.B. Flores, U. Pal, Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J. Appl. Phys 109, 014308 (2011)

    ADS  Google Scholar 

  41. X.Z. Li, Y.Q. Wang, Structure and photoluminescence properties of Ag-coated ZnO nano-needles. J. Alloys Compd. 509, 5765 (2011)

    Google Scholar 

  42. G.R. Khan, R.A. Khan, Gold-gilded zinc oxide nanodiamonds: plasmonic and morphological effects. Int. J. Nanosci. 16, 1750004 (2017)

    Google Scholar 

  43. J. Nayak, S. Kimura, S. Nozaki, Enhancement of the visible luminescence from the ZnO nanocrystals by Li and Al co-doping. J. Lumin. 129, 12 (2009)

    Google Scholar 

  44. A. Sivagamasundari, R. Pugaze, S. Chandrasekar, S. Rajagopan, R. Kannan, Absence of free carrier and paramagnetism in cobalt-doped ZnO nanoparticles synthesized at low temperature using citrate sol–gel route. Appl. Nanosci. 3, 383 (2012)

    ADS  Google Scholar 

  45. L.S. Mende, J.L.M. Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10, 40 (2007)

    Google Scholar 

  46. B.L. Zhu, M. Xie, J. Wang, X.W. Shi, J. Wu, D.W. Zeng, C.S. Xie, Comparative study on effects of H2 flux on structure and properties of Al-doped ZnO films by RF sputtering in Ar+H2 ambient at two substrate temperatures. Ceram. Int. 40, 12093 (2014)

    Google Scholar 

  47. S.H. Jeong, B.S. Kim, B.T. Lee, Photoluminescence dependence of ZnO films grown on Si (100) by radio-frequency magnetron sputtering on the growth ambient. Appl. Phys. Lett. 82, 2625 (2003)

    ADS  Google Scholar 

  48. Q.P. Wang, D.H. Zhang, Z.Y. Xue, X.T. Hao, Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering. Appl. Surf. Sci. 201, 123 (2002)

    ADS  Google Scholar 

  49. Y. Sheng, Y. Jiang, X. Lan, C. Wang, S. Li, X. Liu, H. Zhong, Mechanism and growth of flexible ZnO nanostructure arrays in a facile controlled way. J. Nanomater. 2011, 14 (2011)

    Google Scholar 

  50. R. Liu, Z. Zhang, J. Huang, H. Li, Optical properties of indium-doped ZnO nano-films prepared by spray pyrolysis and hydrothermal synthesis. Asian J. Chem. 25, 9601 (2013)

    Google Scholar 

  51. X.M. Teng, H.T. Fan, S.S. Pan, C. Ye, G.H. Li, Photoluminescence of ZnO thin films on Si substrate with and without ITO buffer layer. J. Phys. D Appl. Phys. 39, 471 (2006)

    ADS  Google Scholar 

  52. X.D. Zhou, X.H. Xiao, J.X. Xu, G.X. Cai, F. Ren, C.Z. Jiang, Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO–Ag coupling. EPL 93, 57009 (2011)

    ADS  Google Scholar 

  53. J. Cho, K.H. Yoon, M.S. Oh, W.K. Choi, Effects of H2 annealing treatment on photo- luminescence and structure of ZnO: Al/Al2O3 grown by radio frequency magnetron sputtering. J. Electrochem. Soc. 150, H225 (2003)

    Google Scholar 

  54. P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, Structural characterization and photoluminescence properties of zinc oxide nanoparticles synthesized by chemical route method. J. Radiat. Res. Appl. Sci. 8, 433 (2015)

    Google Scholar 

  55. A.T. Do, H.T. Giang, T.T. Do, N.Q. Pham, G.T. Ho, Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles. Beilstein J. Nanotechnol. 5, 1261 (2014)

    Google Scholar 

  56. S. Dhara, P.K. Giri, Quick single-step mechanosynthesis of ZnO nanorods and their optical characterization: milling time dependence. Appl. Nanosci. 1, 165 (2011)

    ADS  Google Scholar 

  57. B. Cao, W. Cai, H. Zeng, Temperature-dependent shifts of three emission bands for ZnO nano- needle arrays. Appl. Phys. Lett. 88, 161101 (2006)

    ADS  Google Scholar 

  58. S. Kumar, S. Basu, B. Rana, A. Barman, S. Chatterjee, S.N. Jha, D. Bhattacharyya, N.K. Sahoo, A.K. Ghosh, Structural, optical and magnetic properties of solgel derived ZnO: Co diluted magnetic semiconductor nanocrystals: an EXAFS study. J. Mater. Chem. C 2, 481 (2014)

    Google Scholar 

  59. H.M. Zhang, Q.Q. Fang, W.N. Wang, J.G. Li, C. Zhou, W.J. Huang, Q.P. Zhang, Q.Q. Ding, Q.R. Lv, Y.M. Liu, Optical and magnetic properties of ZnO-based semiconductors regulated by Cu ions. Chin. J. Phys. 51, 143 (2013)

    Google Scholar 

  60. D. Haranath, S. Sahai, A.G. Joshi, B.K. Gupta, V. Shanker, Investigation of confinement effects in ZnO quantum dots. Nanotechnology 20, 425701 (2009)

    Google Scholar 

  61. D. Zhao, C. Andreazza, P. Andreazza, J. Ma, Y. Liu, D. Shen, Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures. Chem. Phys. Lett. 399, 522 (2004)

    ADS  Google Scholar 

  62. Z. Lianga, X. Yub, B. Lei, P. Liua, W. Mai, Novel blue-violet photoluminescence from sputtered ZnO thin films. J. Alloys Compd. 509, 5437 (2011)

    Google Scholar 

  63. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto−Electron. Rev. 18, 467 (2010)

    ADS  Google Scholar 

  64. V. Mangalam, K. Pita, Energy transfer efficiency from ZnO-nanocrystals to Eu3+ ions embedded in SiO2 film for emission at 614 nm. Materials 10, 930 (2017)

    ADS  Google Scholar 

  65. K. Pita, P. Baudin, Q.V. Vu, R. Aad, C. Couteau, G. Lérondel, Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study. Nano Res. Lett. 8, 517 (2013)

    Google Scholar 

  66. S.K. Mishra, S. Srivastava, R.K. Srivastava, A.C. Panday, S.G. Prakash, Photoluminescence and ultraviolet photoresponse in ZnO nanophosphors prepared by thermal decomposition of zinc acetate. Adv. Mater. Lett. 2, 298 (2011)

    Google Scholar 

  67. R. Wu, Y. Yang, S. Cong, Z. Wu, C. Xie, H. Usui, K. Kawaguchi, N. Koshizaki, Fractal dimension and photoluminescence of ZnO tetrapod nanowhiskers Chem. Phys. Lett. 406, 457 (2005)

    Google Scholar 

  68. D. Behera, S.B. Acharya, Nano-star formation Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy. J. Lumines. 128, 1577 (2008)

    ADS  Google Scholar 

  69. B.J. Jin, S. Im, S.Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 366, 107 (2000)

    ADS  Google Scholar 

  70. P.K. Samanta, S.K. Patra, A. Ghosh, P.R. Chaudhuri, Visible emission from ZnO nanorods synthesized by a simple wet chemical method. Int. J. Nanosci. Nanotechnol. 1, 81 (2009)

    Google Scholar 

  71. G. Ahmed, M. Hanif, K. Mahmood, R. Yao, H. Ning, D. Jiao, M. Wu, J. Khan, Z. Liu, Lattice defects of ZnO and hybrids with GO: characterization EPR and optoelectronic properties. AIP Adv. 8, 025218 (2018)

    ADS  Google Scholar 

  72. L. Shi, H. Shen, L. Jiang, X. Li, Co-emission of UV, violet and green photoluminescence of ZnO/TiO2 thin film. Mater. Lett. 61, 4735 (2007)

    Google Scholar 

  73. Z. Lei, L.J. She, L.Y. Hua, J. Qing, Influence of preparation methods on photoluminescence properties of ZnO films on quartz glass. Trans. Nonferrous Met. Soc. China 18, 145 (2008)

    Google Scholar 

  74. A. Sanmugam, D. Vikraman, S. Venkatesan, H.J. Park, Optical and structural properties of solvent, free synthesized starch/ chitosan-ZnO nanocomposites. J. Nanomater. 2017, 7536364 (2017)

    Google Scholar 

  75. H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, Y.Y. Li, Violet photoluminescence from shell layer of Zn∕ZnO core-shell nanoparticles induced by laser ablation. Appl. Phys. Lett. 88, 171910 (2006)

    ADS  Google Scholar 

  76. S. Shi, P. Wang, J. Cui, Z. Sun, Microstructure and doping/temperature-dependent photo-luminescence of ZnO nanospears array prepared by hydrothermal method. Nanoscale Res. Lett. 13, 223 (2018)

    ADS  Google Scholar 

  77. A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Khan.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, G.R. Optical band gap engineering of ZnO nanophosphors via Cu incorporation for ultraviolet–violet LED. Eur. Phys. J. Plus 135, 684 (2020). https://doi.org/10.1140/epjp/s13360-020-00704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00704-1

Navigation