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Abstract Multiphase flow in a minichannel is a complex phenomenon which shows various
patterns dynamics including slugs and bubbles depending on gas/fluid component flow rates.
In this paper, air and water–glycerol mixed fluid flow has been studied. In the experiment,
the volume flow rates of air and water–glycerol were changing. We studied transition of
bubbles to slugs two-phase flow patterns by using multiscale entropy approach to digital
camera signals and identified various patterns. The results clearly indicate that the multiscale
entropy is an important complexity measure dependent on the flow distribution of the gas
phase in a water–glycerol content.

1 Introduction

Multiphase flows which appear in some of the thermal converters attracted many researchers
in the recent papers. The identification of flow patterns in minichannels depends on the exper-
imental and identification technique [1–5] used. Due to the changing dynamics of phenomena
occurring during two-phase flow, nonlinear methods of data analysis were implemented in
this field. Such algorithms as Hurst and Lyapunov exponents [6], correlation dimension
or Kolmogorov entropy [7, 8] have been successfully used to classify flow patterns and
analyse flow parameters oscillations. What is more, other complexity measures including
Lempel–Ziv measure and recurrence quantification analysis (RQA) were applied to iden-
tify the main flow patterns and characterise the nonlinear dynamics of the flow [4, 5, 9,
10]. Despite all the research which has been undertaken, there is still a need of introducing
methods of analysis over different timescales due to various frequencies of flow patterns
occurrence. Recently developed algorithms—multiscale entropy (MSE) and composite mul-
tiscale entropy (CMSE), seem to be promising tools as they have already been applied to
complex time series including: noise and real vibration data [11], laser Doppler flowmetry
signals [12], laser speckle contrast images [13], human gait dynamics [14] or river flow
time series [15]. In comparison with MSE, the CMSE algorithm reduces the variance of the
estimated entropy values and in this way it can be used for shorter time series (less than
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750 data points). Both algorithms are based on preparing a coarse-grained time series which
characterises the system dynamics over different timescales and then calculating sample
entropy (SampE). The SampE represents the regularity level of coarse-grained time series
and is calculated in MSE and CMSE algorithms for each timescale factor [11]. In several
papers, results obtained from multiscale entropy algorithms have been further analysed using
artificial neural networks, complex networks and classifiers [11, 16–18].

The aim of the paper is to examine whether a signal gathered from a single detector (in this
case an image representing a part of the video frame) may provide information about flow
pattern in a minichannel. In order to verify this hypothesis, we performed multiscale analysis
of air–water–glycerol flow focusing on changes in phase distribution during patterns trans-
formation from fairly elongated bubbles (slug flow) into various sized air bubbles. Namely,
we propose a method of two-phase flow image analysis using composite multiscale entropy
(CMSE). In order to classify analysed flows, the complexity index (CI) and the support vector
machine (SVM) classifier have been applied.

2 Experimental set-up and data characteristics

To differentiate various flow patterns, we adopt composite multiscale entropy (CMSE) applied
to images recorded with a high-speed camera—Phantom v.1610 with the speed of 5000
fps. In the experiment, two-phase flow patterns in a circular minichannel (3 mm×3 mm x
60 mm) have been taken under consideration. The flow consisted of two phases, liquid phase:
water–glycerol solution (solution’s concentration: 45%) and air phase. The experimental
schema is shown in Fig. 1. A pump (4—Fig. 1) generated compressed air which passed
through an air tank (5—Fig. 1) and a valve (6—Fig. 1). Next, it was directed into the constant-
pressure air tank (5—Fig. 1), a flow meter (8—Fig. 1) and a special micro-bubble generator
(1—Fig. 1). A water tank (7—Fig. 1) was also a part of the set-up. The two-phase flow
patterns were recorded using the Phantom v. 1610 high-speed camera (2—Fig. 1). The light
(3—Fig. 1) was directed onto the minichannel (9—Fig. 1).

3 Method of data analysis

Using our experimental set-up (Fig. 1), two-phase flows of water–glycerol and air with
different flow rates were studied systematically. The particular flow cases recorded through
a transparent channel are illustrated by photographs in Fig. 2. For such ranges of air and
water–glycerol flow rates, we observed in response various patters. In the limit of large fluid
flow rate, the flow is fairly irregular with many small bubbles, while small fluid flow favours
larger-sized bubbles. The bubbles merge to larger size with an increase in air flow rate with
visible transition to slugs for low enough water flow rates. Interestingly, for a moderate level
of air rate and low flow rate of fluid the flow can be more regular showing periodic distribution
of flow phase densities.

Furthermore, to perform automatic identification of the flows, the gathered two-phase flow
video frames (ten frames for each observed flow) have been converted into pixel matrices
(64 pixels x 1280 pixels). First, a central part of the frame was extracted (24 pixels x 800
pixels). The pixels from the mentioned part of the frame were summed in each column, and
this way, a one-dimensional time series was obtained, x � {x1, x2, …, xn}.
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Fig. 1 The experimental schema: 1—a special micro-bubble generator [8], 2—Phantom v. 1610 high-speed
camera, 3—lightning system, 4—pumps, 5—constant-pressure air tanks, 6—a valve, 7—a water tank, 8—flow
meters, 9—minichannel
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Fig. 2 The analysed two-phase flows with different air and water–glycerol rates

Next, we defined new variables due to the changing light conditions during the experiment
and the following algorithm minimising the related errors:

x ′
n−1 � xn−1 − xn

xn−1
. (1)

This new variable will be used in the next steps of analysis and denoted as x for notation
simplicity.

Two-phase flow parameters, dynamics and patterns vary one from another, thus assessing
the regularity of each flow is useful. One of the most common regularity coefficients is the
sample entropy (SampE). It is frequently used to improve understanding of the nonlinear
response of various dynamical systems [19–21]. This quantity gives information of the con-
ditional probability that two similar series with m subsequent data points will remain similar
if one more subsequent point is added. The similarity is estimated using a coarse-grained
procedure which is based on a Heaviside step function with the parameter r which is the
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Fig. 3 The procedure of coarse-grained time-series preparation. The original time series consisting of the
x elements is characterised by the starting sampling time step. The transformed effected series yk,p (τ ) are
related to the effective scale τ where the elements are averages of τ consecutive neighbours of the original
elements. Composite procedure takes into account various choices of neighbours as illustrated for τ � 2

threshold concerning distance between samples. The r threshold defines the condition of
distance between samples where the distance is shorter than r. If the particular number of
neighbouring sequences, m, fulfils this requirement, then 1 is added to nn coefficient, and if
one more sample does not change this condition, then 1 is also added to nd coefficient. Such
coefficients are calculated through each scale factor τ of the time series. The sample entropy
is defined as follows:

SampE � − log
nd
nn

. (2)

Nevertheless, it is not applicable for determining the regularity of long-term structures;
thus, the multiscale entropy (MSE) [22, 23] and also the composite multiscale entropy
(CMSE) [11] were defined. The composite multiscale entropy using images was applied
to the one-dimensional time series x. In order to use the CMSE, a coarse-grained series from
original time series was formed. Two basic steps of the algorithm were as follows: (1) form-
ing multiple coarse-grained time series for all scale factors τ � 50; (2) computing sample
entropy for all coarse-grained time series for m � 2 and deriving the CMSE value which is
the mean of τ sample entropy values. The coarse-grained time series is defined as:

y(τ )
k,p � 1

τ

p∗τ+k−1∑

i�(p−1)∗τ+k

xi, 1 ≤ p ≤ N

τ
, 1 ≤ k ≤ τ, (3)

where N—the length of each examined time series, x, τ—scale factor, k—number of the
coarse-grained series for each τ and p—length of each coarse-grained time series. A coarse-
grained time series for scale factor τ � 2 is prepared according to the scheme presented
in Fig. 3. The CMSE algorithm is characterised by several parameters: τ—scale factor,
m—embedded dimension which states that two similar sequences of m subsequent points
will still be similar when one more consecutive point is considered, N—number of points of
the one-dimensional time series, r—maximum norm of the distance between samples and
σ—standard deviation of each coarse-grained time series.
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The CMSE values for each of the considered flow are calculated according to the following
formula:

CMSE(x, τ,m, r) � 1

τ

τ∑

k�1

SampE
(
y(τ )
k ,m, r

)
. (4)

In this paper, the CMSE values were calculated for numerous scale factors, τ ε {1,2,3,
…, 50}, and the obtained values for each flow were averaged for ten extracted frames of the
flow. In the next step, the complexity index (CI) which is the integral of the CMSE curve
was calculated for each averaged CMSE function. The CI enables quantifying the integrated
complexity of the data across multiple scales.

4 Flow pattern characteristics

The obtained CMSE curves for all 56 observed flows presented in Fig. 2 varied one from
another. Figure 4d shows three representative CMSE curves with complexity index values
shown in the figure’s legend obtained for image signals (Fig. 4a–c).

One can observe a hyperbolic-like shape in Fig. 4d for minibubbles flow (Fig. 4c) with
a monotonic decrease. These data are related to white noise stochastic distribution of fairly
small bubbles inclusions. Note that the mixture of the diameters and positions of bubbles
varies as well. On the other hand, in CMSE shape of bubbles flow (Fig. 4a) we observe
minimum at scale τ � 3 and maximum around 8 (Fig. 4d). The minimum signals the formation
of more correlated (periodic) flow of the larger bubbles which are separated by roughly
constant fluid spaces. Additionally, the period of such a modulated distribution is close to 3.
For smaller and larger scales, this self-organisation phenomenon is blurred. The situation in
case of slug flow (Fig. 4b) is different as instead of minimum we observe more flat distribution
informing about the presence of flow correlations but also the absence of characteristic
distances (Fig. 4d).

For all observed flows, the CI values were in the following range: 4.24÷15.33. On the
basis of calculations and visual observation, a table consisting of CI values for each flow and
a class of flow patterns {I, II, III, IV} which was determined for each flow was prepared.
In the next step, the data were analysed by WEKA (Waikato Environment for Knowledge
Analysis) software [24]. The LibSVM classification was performed on the mentioned table.
Based on several iterations of classification tests, the validation of the prepared table was
conducted. Finally, the results table consisted of 16 flows of class I with the CI in the range
of 4.24÷8.70, 15 flows of class II with the CI in the range of 10.01÷11.87, 10 flows of class
III with the CI in the range of 12.00÷13.86 and 15 flows of class IV with the CI in the range
of 14.00÷15.33. The percentage of correctly classified instances was equal to 96.43%. The
total number of instances (flows) was 56.

Consequently, Fig. 5 presents four distinguished flow classes according to CI value and
SVM classification: Class I presents slugs flow; class II presents short slugs and cap bubbles
flow; class III presents bubbles and minibubbles flow; and class IV presents minibubbles
and dispersed bubbles flow. According to the performed analysis, a flow pattern map for all
analysed flows was obtained and is shown in Fig. 6. This map indicates that flows from class
I (slugs flow) were clearly distinguished from all other flows. For better clarity, five particular
regions of pattern’s classification results are separated with bold lines (Fig. 6). The middle
region represents the least stable patterns as all identified flow classes mix in this area. One
can also see that bubbles and minibubbles flows (III) and minibubbles and dispersed bubbles
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Fig. 4 Input one-dimensional time series and example frames of the registered flow patterns (a, b, c) and
CMSE functions and CI values obtained for them (d). The CMSE curves obtained for mentioned flows with
the following air (qa) and water–glycerol (qw) rates: a qa � 0.07 ln/min, qw � 32.66 kg/h, b qa � 0.199
ln/min, qw � 16.15 kg/h, c qa � 0.328 ln/min and qw � 43.44 kg/h. In the flows, such patterns were observed:
a bubbles, b slugs, c minibubbles as concluded from Fig. 2
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Fig. 5 Flows classes versus CI values according to SVM classification grouped for the cases from Fig. 2

Fig. 6 Flow pattern map obtained based on CI value and SVM classification procedure: I—slugs flow, II—short
slug and cap bubbles flow, III—bubbles and minibubbles flow, IV—minibubbles and dispersed bubbles flow.
The bold lines distinguish regions with clearly classified patterns from those which identified pattern mix

flows (IV) share neighbouring places on the flow pattern map. Two ‘corners’ of the map
present areas which were clearly separated—left, upper ‘corner’ shows flows from class II
(short slugs and cap bubbles flow) and right, lower ‘corner’ flows from class IV (minibubbles
and dispersed bubbles flow).

Figure 7 shows CMSE functions for example flows from particular classes denoted as
(a)–(l) as defined in Table 1.

The particular cases presented in Fig. 7 are grouped into classes (I)–(IV). The classification
is based on the obtained parameters of CI for the example flows presented in Fig. 7.

The standard deviation (SD) of CI value was calculated using CMSE functions obtained
for ten subsequent frames of each flow calculated for all scale factors. Interestingly, basing
on this parameter we can classify the flows into four classes: slugs (I), large and intermediate
bubbles (II and III) with self-organisation tendency and finally the most stochastic flow with
small bubbles (IV).
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Fig. 7 CMSE functions of
example flows characterised in
Table 1: a example flows from
class I, b example flows from
class II, c example flows from
class III, d example flows from
class IV. The cases (a–l) as
defined in Table 1
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Table 1 Characterisation of
example flow from particular
classes presented in Fig. 7
including CI values and flow rates

Class Flow’s
indication
(Fig. 7)

CI±SD qa (ln/min) qw (kg/h)

I a 4.24±0.45 0.285 10.76

b 6.14±0.26 0.156 16.15

c 7.57±0.07 0.242 16.15

II d 10.18±0.07 0.070 16.15

e 10.48±0.47 0.328 26.99

f 11.69±0.10 0.113 32.61

III g 13.36±0.26 0.156 32.55

h 12.34±0.32 0.027 21.69

i 13.46±0.36 0.070 43.54

IV j 15.33±0.13 0.070 38.15

k 14.60±0.33 0.113 43.52

l 14.49±0.16 0.328 38.00

5 Conclusions

In our studies of multiphase flow in a minichannel, we used the composite multiscale entropy
and complexity index to classify the flow. The curves of CMSE for slugs flows (class I) have
a flat distribution informing about the presence of flow correlations but also the absence of
characteristic distances as in many cases slugs were moving one after another with no gaps.
As far as class II—short slugs and bubbles flow and class III—bubbles and minibubbles flow
are concerned, the CMSE shapes reach minimum for low scales and maximum couple points
further. This fact indicates that in these flows, bubbles and short slugs were separated by fluid
flow. Finally, the CMSE curves for minibubbles and dispersed bubbles flow (class IV) have
a hyperbolic shape as fairly small bubbles resemble white noise stochastic distribution. The
CI for identified classes was the higher, the more instabilities of the flow and small-sized
patterns were observed.

A further classification of the flows was based on SVM algorithm applied in WEKA
software. The percentage of correctly classified instances was high and equal to 96.43%.
According to the obtained flow pattern map, flows from class I (slugs flow) were clearly
distinguished from all other flows. The particular regions of pattern’s classification consist of
a.o. the middle region which presents the least stable area as all of the identified flow classes
are mixed there. It forms a sort of a temporary pattern area between slugs and minibubbles.
One can see that the errors in classification may have been caused by two very similar classes
of flow—class III and class IV. Both classes include minibubbles patterns which fluctuate
and move during an observed flow. What is more, only ten subsequent frames were taken into
account; thus, some instabilities observed in this short part of the video strongly influenced
the results of the classification.

We succeeded to identify the particular flow patterns by analysing images obtained from
a ‘single detector’—in this case a part of the video frame of the flow. In the analysis, flows
with changing air and fluid flow rates based on CI values using SVM classification were
identified. We can conclude that it is possible to gather information about the flow using a
single detector situated in a particular position of the minichannel. Additionally, it can be
stated that CMSE was able to indicate a formation of flows with periodic tendency to the

123



661 Page 10 of 11 Eur. Phys. J. Plus (2020) 135:661

particular phase distributions. We assume that for channels with bigger size and with uniform
lighting conditions, other algorithms such as multivariate multiscale entropy algorithms may
be beneficial.
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