Skip to main content
Log in

Flow of power-law fluid through fractal discrete fracture network

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, a new approach to determine the flowrate of a power-law fluid through a fractal fracture network where fractures are parallel is developed. The aperture and trace length of fracture network can follow separate fractal distributions. The flowrate through the fractal network is determined through mean field approximation from the integration of flowrates in individual fractures over the aperture range of the fractal network. Three dimensionless parameters are defined to investigate the relative effects of a power-law fluid in an individual fracture and in a fractal fracture network. The analytical expression for the ratio of flowrate of power-law fluid over Newtonian fluid is developed. The effects of fractal dimension of aperture, power-law fluid index of fluid and pressure head gradient parameter on the flowrate are analyzed and discussed. The results demonstrate that for a shear-thinning fluid, increase in the fractal dimension of aperture reduces the flowrate ratio of power-law fluid over Newtonian fluid, while the reverse is true for a shear-thickening fluid. A large fractal dimension of aperture amplifies the effect of power-law fluid index of fluid when the pressure head gradient is low. The flowrate ratio of the power-law fluid over Newtonian fluid in the network increases quickly for the shear-thinning fluid and decreases for the shear-thickening fluid with the increase in the pressure head gradient parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Adachi, E. Siebrits, A. Peirce, J. Desroches, Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44, 739–757 (2007). https://doi.org/10.1016/j.ijrmms.2006.11.006

    Article  Google Scholar 

  2. A. Lavrov, Modeling flow of a biviscous fluid from borehole into rock fracture. J. Appl. Mech. 73, 171–173 (2006). https://doi.org/10.1115/1.2061927

    Article  ADS  MATH  Google Scholar 

  3. A.M. Linkov, On comparison of thinning fluids used for hydraulic fracturing. Int. J. Eng. Sci. 10, 14–23 (2014). https://doi.org/10.1016/j.ijengsci.2013.12.005

    Article  MathSciNet  MATH  Google Scholar 

  4. S.A. Boronin, A.A. Osiptsov, J. Descroches, Displacement of yield-stress fluids in a fracture. Int. J. Multiph. Flow 76, 47–63 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2015.07.001

    Article  MathSciNet  Google Scholar 

  5. A. Lavrov, Flow of truncated power-law fluid between parallel plates for hydraulic fracturing applications. J. Non-Newton. Fluid Mech. 223, 141–146 (2015). https://doi.org/10.1016/j.jnnfm.2015.06.005

    Article  MathSciNet  Google Scholar 

  6. M. Perkowska, M. Wrobel, G. Mishuris, Universal hydrofracturing algorithm for shear-thinning fluids: particle velocity based simulation. Comput. Geotech. 71, 310–337 (2016). https://doi.org/10.1016/j.compgeo.2015.10.005

    Article  Google Scholar 

  7. M. Turcio, J. Reyes, R. Camacho, C. Lira-Galeana, R.O. Vargas, O. Manero, Calculation of effective permeability for the BMP model in fractal porous media. J. Pet. Sci. Eng. 103, 51–60 (2013). https://doi.org/10.1016/j.petrol.2013.02.010

    Article  Google Scholar 

  8. A.J. Katz, A.H. Thompson, Fractal sandstones pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325–1328 (1985). https://doi.org/10.1103/PhysRevLett.54.1325

    Article  ADS  Google Scholar 

  9. K. Watanabe, H. Takahashi, Fractal geometry characterization of geothermal reservoir fracture networks. J. Geophys. Res. Solid Earth 100, 521–528 (1995). https://doi.org/10.1029/94JB02167

    Article  Google Scholar 

  10. J.J. Andrade, E. Oliveira, A. Moreira, H. Herrmann, Fracturing the optimal paths. Phys. Rev. Lett. 103, 225503 (2009). https://doi.org/10.1103/PhysRevLett.103.225503

    Article  ADS  Google Scholar 

  11. T. Miao, B. Yu, Y. Duan, Q. Fang, A fractal analysis of permeability for fractured rocks. Int. J. Heat Mass Transf. 81, 75–80 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.010

    Article  Google Scholar 

  12. R. Liu, Y. Jiang, B. Li, X. Wang, A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Comput. Geotech. 65, 45–55 (2015). https://doi.org/10.1016/j.compgeo.2014.11.004

    Article  Google Scholar 

  13. V.V. Mourzenko, J.-F. Thovert, P.M. Adler, Macroscopic permeability of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E 69, 066307 (2004). https://doi.org/10.1103/PhysRevE.69.066307

    Article  ADS  Google Scholar 

  14. V.V. Mourzenko, J. Thovert, P.M. Adler, Percolation of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E 72, 036103 (2005). https://doi.org/10.1103/PhysRevE.72.036103

    Article  ADS  MATH  Google Scholar 

  15. I.I. Bogdanov, V.V. Mourzenko, J.-F. Thovert, P.M. Adler, Effective permeability of fractured porous media with power-law distribution of fracture sizes. Phys. Rev. E 76, 036309 (2007). https://doi.org/10.1103/PhysRevE.76.036309

    Article  ADS  Google Scholar 

  16. J. Zhu, Y. Cheng, Effective permeability of fractal fracture rocks: significance of turbulent flow and fractal scaling. Int. J. Heat Mass Transf. 116, 549–556 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.026

    Article  Google Scholar 

  17. J. Zhu, Impact of scaling break and fracture orientation on effective permeability of fractal fracture network. SN Appl. Sci. 1, 4 (2019). https://doi.org/10.1007/s42452-018-0002-2

    Article  ADS  Google Scholar 

  18. S. Wang, B. Yu, Analysis of seepage for power-law fluids in the fractal-like tree network. Transp. Porous Media 87, 191–206 (2011). https://doi.org/10.1007/s11242-010-9675-8

    Article  Google Scholar 

  19. A. Lavrov, Numerical modeling of steady-state flow of a non-Newtonian power-law fluid in a rough-walled fracture. Comput. Geotech. 50, 101–109 (2013). https://doi.org/10.1016/j.compgeo.2013.01.004

    Article  Google Scholar 

  20. S. Zhang, Y. Sun, X. Wu, T. Miao, H. Gao, F. Song, B. Yu, A comprehensive analysis of the seepage characters of non-Newtonian fluids in fractal porous media. J. Porous Media 17, 1031–1044 (2014). https://doi.org/10.1615/JPorMedia.v17.i12.10

    Article  Google Scholar 

  21. S. Wang, T. Wu, H. Qi, Q. Zheng, Q. Zheng, A permeability model for power-law fluids in fractal porous media composed of arbitrary cross-section capillaries. Phys. A 437, 12–20 (2015). https://doi.org/10.1016/j.physa.2015.05.089

    Article  MathSciNet  MATH  Google Scholar 

  22. M.-Q. Kui, X.-H. Tan, X.-P. Li, J. Cai, Analysis on unsteady flow for power-law fluids in dual fractal media. J. Porous Media 20, 1071–1086 (2017). https://doi.org/10.1615/JPorMedia.v20.i12.20

    Article  Google Scholar 

  23. K. Bao, A. Lavrov, H.M. Nilsen, Numerical modeling of non-Newtonian fluid flow in fractures and porous media. Comput. Geosci. 21, 1313–1324 (2017). https://doi.org/10.1007/s10596-017-9639-y

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Hageman, R. de Borst, Flow of non-Newtonian fluids in fractured porous media: isogeometric vs standard finite element discretization. Int. J. Numer. Anal. Methods Geomech. 43, 2020–2037 (2019). https://doi.org/10.1002/nag.2948

    Article  Google Scholar 

  25. K.B. Min, L. Jing, Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int. J. Rock Mech. Min. Sci. 40, 795–816 (2003). https://doi.org/10.1016/S1365-1609(03)00038-8

    Article  Google Scholar 

  26. A. Baghbanan, L. Jing, Hydraulic properties of fracture rock masses with correlated fracture length and aperture. Int. J. Rock Mech. Min. Sci. 44, 704–719 (2007). https://doi.org/10.1016/j.ijrmms.2006.11.001

    Article  Google Scholar 

  27. J. Zhu, Effective aperture and orientation of fractal fracture network. Phys. A 512, 27–37 (2018). https://doi.org/10.1016/j.physa.2018.08.037

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Zhu, Effective hydraulic conductivity of discrete fracture network with aperture-length correlation. Geosci. J. 24, 329–338 (2020). https://doi.org/10.1007/s12303-019-0025-8

    Article  ADS  Google Scholar 

  29. T. Haroona, A.R. Ansarib, A.M. Siddiquic, S.U. Jana, Analysis of Poiseuille flow of a reactive power law fluid between parallel plates. Appl. Math. Sci. 5, 2721–2746 (2011)

    MathSciNet  Google Scholar 

  30. A. Majumdar, B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 112, 205–216 (1990). https://doi.org/10.1115/1.2920243

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) EPSCoR RII Track-1 Project, funded by National Science Foundation EPS-1208909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianting Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J. Flow of power-law fluid through fractal discrete fracture network. Eur. Phys. J. Plus 135, 664 (2020). https://doi.org/10.1140/epjp/s13360-020-00684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00684-2

Navigation