Skip to main content
Log in

A parabolic quasi-Sturmian approach to quantum scattering by a Coulomb-like potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A computational method in parabolic coordinates is proposed to treat the scattering of a charged particle from both spherically and axially symmetric Coulomb-like potentials. Specifically, the long-range part of the Hamiltonian is represented in parabolic quasi-Sturmian basis functions, while the short-range part is approximated by a Sturmian \(L^2\)-basis-set truncated expansion. We establish an integral representation of the Coulomb Green’s function in parabolic coordinates from which we derive a convenient closed form for its matrix elements in the chosen \(L^2\) basis set. From the Green’s function, we build quasi-Sturmian functions that are also given in closed form. Taking advantage of their adequate built-in Coulomb asymptotic behavior, scattering amplitudes are extracted as simple analytical sums that can be easily computed. The scheme, based on the proposed quasi-Sturmian approach, proves to be numerically efficient and robust as illustrated with converged results for three different scattering potentials, one of spherical and two of axial symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data of numerical calculations presented in this manuscript are available upon reasonable request by contacting with the corresponding author.].

References

  1. Z. Papp, Phys. Rev. A 46, 4437 (1992)

    Article  ADS  Google Scholar 

  2. S. Bezzaouia, M. Telmini, Ch. Jungen, Phys. Rev. A 70, 012713 (2004)

    Article  ADS  Google Scholar 

  3. M.C. Zammit, D.V. Fursa, I. Bray, Phys. Rev. A 90, 022711 (2014)

    Article  ADS  Google Scholar 

  4. M.C. Zammit, D.V. Fursa, J.S. Savage, I. Bray, J. Phys. B.: At. Mol. Opt. Phys. 50, 123001 (2017)

    Article  ADS  Google Scholar 

  5. E. Bauge, J.P. Delaroche, M. Girod, Nucl. Phys. A654, 829c (1999)

    Article  ADS  Google Scholar 

  6. K. Amos, P.J. Dortmans, H.V. von Geramb, S. Karataglidis, J. Raynal, Adv. Nucl. Phys. 25, 275 (2000)

    Google Scholar 

  7. C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in the Intense Laser Fields (Cambridge University Press, New York, 2012)

    MATH  Google Scholar 

  8. Tamaz Kereselidze, Irakli Noselidze, Alexander Devdariani, J. Phys. B 52, 105003 (2019)

    Article  ADS  Google Scholar 

  9. J.A. Del Punta, M.J. Ambrosio, G. Gasaneo, S.A. Zaytsev, L.U. Ancarani, J. Math. Phys. 55, 052101 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. P.C. Ojha, J. Math. Phys. 28, 392 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.S. Zaytsev, S.A. Zaytsev, L.U. Ancarani, K.A. Kouzakov, Phys. Rev. A 97, 043417 (2018)

    Article  ADS  Google Scholar 

  12. S.A. Zaytsev, A.S. Zaytsev, L.U. Ancarani, K.A. Kouzakov, Eur. Phys. J. D 73, 42 (2019)

    Article  ADS  Google Scholar 

  13. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing (Dover, New York, 1972)

    MATH  Google Scholar 

  14. R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New-York, 1966)

    Google Scholar 

  15. H. Buchholz, The Confluent Hypergeometric Function (Springer, Berlin, 1969)

    Book  Google Scholar 

  16. I.S. Gradshtein, I.M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980)

    Google Scholar 

  17. S.M. Blinder, J. Math. Phys. 22, 306 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Chetouani, T.F. Hamman, J. Math. Phys. 28, 598 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. R.A. Swainson, G.W.F. Drake, J. Phys. A 24, 95 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series. Volume 2: Special Functions (Gordon and Breach Science Publ., New York, 1992)

    MATH  Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) (Pergamon, Oxford, 1977)

    MATH  Google Scholar 

  22. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Dover, Mineola, 2006)

    Google Scholar 

  23. P.G. Burke, Potential Scattering in Atomic Physics (Springer, Berlin, 2012)

    Google Scholar 

  24. M. Gavrila, J.Z. Kamiński, Phys. Rev. Lett. 52, 613 (1984)

    Article  ADS  Google Scholar 

  25. J. van de Ree, J.Z. Kamiński, M. Gavrila, Phys. Rev. A 37, 4536 (1988)

    Article  ADS  Google Scholar 

  26. F. Salvat, A. Jablonski, C.J. Powell, Comput. Phys. Commun. 165, 157 (2005)

    Article  ADS  Google Scholar 

  27. S.P. Merkuriev, L.D. Faddeev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic, Dordrecht, 1993)

    MATH  Google Scholar 

  28. A.S. Zaytsev, D.S. Zaytseva, L.U. Ancarani, S.A. Zaytsev, Eur. Phys. J. D 73, 111 (2019)

    Article  ADS  Google Scholar 

  29. A.A. Sorokin, S.V. Makogonov, S.P. Korolev, The information infrastructure for collective scientific work in the Far East of Russia. Sci. Tech. Inf. Process. 44(4), 302–304 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0818-2020-0005). The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University and the Shared Facility Center “Data Center of FEB RAS” (Khabarovsk, Russia) [29].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zaytsev.

Appendices

The matrix elements of the Green’s function

In this appendix we provide the calculation details to perform the four-dimensional integral

$$\begin{aligned}&{\mathcal {G}}^{|m| (\pm )}_{n'_1 n'_2;\; n_1 n_2}(\beta , k)=\int \limits _{0}^{\infty }\hbox {d}\xi \int \limits _{0}^{\infty }\hbox {d}\eta \int \limits _{0}^{\infty }\hbox {d}\xi ' \int \limits _{0}^{\infty }\hbox {d}\eta ' \nonumber \\&\quad \varphi ^{|m|}_{n'_1}(\xi ) \varphi ^{|m|}_{n'_2}(\eta )\,{\mathcal {G}}^{|m|(\pm )}(k; \xi , \eta ; \xi ', \eta ') \varphi ^{|m|}_{n_1}(\xi ')\varphi ^{|m|}_{n_2}(\eta '). \end{aligned}$$
(67)

We first make use of the integral representation (17) and interchange integration orders. For the sake of brevity, we consider hereafter only the \((+)\) case. Consider first the integral over \(\xi '\)

$$\begin{aligned} {\mathcal {I}}_n(\xi )=\int \limits _{0}^{\infty }\hbox {d}\xi '\exp \left\{ i\frac{k}{2}\xi 'c-b\xi ' \right\} I_{\lambda }\left( -i k \sqrt{\xi \xi '}s\right) (2b\xi ')^{\frac{\lambda }{2}}L^{\lambda }_{n}(2b\xi '), \end{aligned}$$
(68)

where c and s denote \(\cosh (z)\) and \(\sinh (z)\), respectively. We calculate it using formula (2.19.12, 6) of Ref. [20]

$$\begin{aligned} {\mathcal {I}}_n(\xi )=\frac{(-1)^{n}}{b}\left( p s \sqrt{2x} \right) ^{\lambda } \frac{(1-pc)^{n}}{(1+pc)^{n+\lambda + 1}}\exp \left\{ \frac{p^2s^2x}{1+pc}\right\} L^{\lambda }_{n}\left( -2\frac{p^2s^2x}{1-p^2c^2} \right) , \end{aligned}$$
(69)

where \(p= -i\frac{k}{2b}\), \(x=b\xi \). Then we consider the integral over \(\xi \) and perform the following auxiliary integral:

$$\begin{aligned} {\mathcal {J}}_{mn}=&\int \limits _{0}^{\infty }\hbox {d}\xi \left( 2 b \xi \right) ^{\frac{\lambda }{2}}L^{\lambda }_{m}(2 b \xi )\hbox {e}^{-b \xi }{\mathcal {I}}_n(\xi )\hbox {e}^{i\frac{k}{2}\xi c}\nonumber \\ =\,&(-1)^{n}\frac{2^{\lambda }}{b^2}(ps)^{\lambda }\frac{(1-pc)^{n}}{(1+pc)^{n+\lambda + 1}} \nonumber \\&\times \int \limits _{0}^{\infty }\hbox {d}x\, x^{\lambda }\exp \left\{ -x\frac{1+2pc+p^2}{1+pc} \right\} L^{\lambda }_{m}(2x)L^{\lambda }_{n}\left( -2\frac{p^2s^2x}{1-p^2c^2} \right) . \end{aligned}$$
(70)

Using formula (2.19.14, 6) of Ref. [20] we obtain

$$\begin{aligned} {\mathcal {J}}_{mn}=\,&(-1)^{m+n}\frac{2^{\lambda }}{b^2}\varGamma (\lambda +1)\,\frac{(\lambda +1)_{m}(\lambda +1)_{n}}{m! n!}\nonumber \\&\times \frac{(ps)^{\lambda } (1-p^2)^{m+n}}{(1+2pc+p^2)^{m+n+\lambda + 1}}\, {_2F_1}\left( -m, -n; \lambda +1;\frac{4p^2(c^2-1)}{(1-p^2)^2} \right) . \end{aligned}$$
(71)

The integration over \(\eta \) and \(\eta '\) are performed in exactly the same manner.

Further, for evaluating the Green’s function matrix element (67) it remains to integrate over z, and we perform the following integral:

$$\begin{aligned} {\mathcal {K}}=-i\mu k \int \limits _{0}^{\infty } \hbox {d}z\, \sinh (z)\left[ \coth \left( \frac{z}{2}\right) \right] ^{-2i\beta } {\mathcal {J}}_{n'_1,n_1}\,{\mathcal {J}}_{n'_2,n_2}. \end{aligned}$$
(72)

We use a change of variables

$$\begin{aligned} x = \left[ \tanh \left( \frac{z}{2}\right) \right] ^2 \Rightarrow \hbox {d}x=\sqrt{x}(1-x)\hbox {d}z \end{aligned}$$
(73)

to write

$$\begin{aligned} {\mathcal {K}}=\frac{i\mu }{2 k}\frac{1}{b^2}(1-\zeta ^2)^{2\lambda +2}(-\zeta )^{-K}(\lambda !)^2\frac{(\lambda +1)_{n'_1}(\lambda +1)_{n_1}}{n'_1! n_1!}\frac{(\lambda +1)_{n'_2}(\lambda +1)_{n_2}}{n'_2! n_2!}\ \mathcal {{\tilde{K}}}, \end{aligned}$$
(74)

where

$$\begin{aligned} \mathcal {{\tilde{K}}}=\,&\int \limits _{0}^{1} \hbox {d}x\, x^{i\beta + \lambda }(1-x)^K(1-\zeta ^2 x)^{-K-2\lambda -2} {_2F_1}\left( -n'_1, -n_1; \lambda +1; \left( \frac{1-\zeta ^2}{\zeta } \right) ^2\frac{x}{(1-x)^2} \right) \nonumber \\&\times {_2F_1}\left( -n'_2, -n_2; \lambda +1; \left( \frac{1-\zeta ^2}{\zeta } \right) ^2\frac{x}{(1-x)^2} \right) , \end{aligned}$$
(75)

and \( K=n'_1+n'_2+n_1+n_2\). The integral \(\mathcal {{\tilde{K}}}\) is calculated as follows. Using the expression of the polynomial

$$\begin{aligned} {_2F_1}\left( -m, -n; \lambda +1; z \right) =\sum \limits _{\ell = 0}^{\min (m, n)}\frac{\left( \begin{array}{c} m \\ {\ell } \end{array}\right) \left( \begin{array}{c} n\\ {\ell } \end{array}\right) }{\left( \begin{array}{c} {\lambda + \ell } \\ {\ell } \end{array}\right) }z^{\ell }, \end{aligned}$$
(76)

the product of the two hypergeometric functions becomes the polynomial

$$\begin{aligned} \sum \limits _{\ell =0}^{u+v} c_{\ell }\,\left[ \left( \frac{1-\zeta ^2}{\zeta } \right) ^2\frac{x}{(1-x)^2} \right] ^{\ell } \end{aligned}$$
(77)

whose coefficients \(c_{\ell }\) are

$$\begin{aligned} c_{\ell }=\sum \limits _{j=\max (\ell -v,0)}^{\min (\ell , u)}\frac{ \left( \begin{array}{c} {n_1} \\ {j} \end{array}\right) \left( \begin{array}{c} {n'_1} \\ {j} \end{array}\right) \left( \begin{array}{c} {n_2} \\ {\ell -j} \end{array}\right) \left( \begin{array}{c} {n'_2} \\ {\ell -j} \end{array}\right) }{\left( \begin{array}{c} {j+\lambda } \\ {j} \end{array}\right) \left( \begin{array}{c} {\ell -j+\lambda } \\ {\ell -j} \end{array}\right) }, \end{aligned}$$

with \(u=\min (n_1,n'_1 )\) and \(v=\min (n_2, n'_2)\). We thus have

$$\begin{aligned} \mathcal {{\tilde{K}}}= \sum \limits _{\ell =0}^{u + v} c_{\ell }\,\left( \frac{1-\zeta ^2}{\zeta } \right) ^{2\ell } \,{\mathcal {L}}_{\ell } \end{aligned}$$
(78)

in terms of the integrals

$$\begin{aligned} {\mathcal {L}}_{\ell } = \int \limits _{0}^{1} \hbox {d}x\, x^{i\beta + \lambda + \ell }(1-x)^{K-2\ell }(1-\zeta ^2 x)^{-K-2\lambda -2} \end{aligned}$$
(79)

which are readily identified as the integral representation of Gauss hypergeometric functions [13] (Eq. (15.3.1))

$$\begin{aligned} {\mathcal {L}}_{\ell } =\,&\frac{\varGamma (i\beta + \lambda + \ell + 1)\varGamma (K-2\ell + 1)}{\varGamma (i\beta + K + \lambda + 2 -\ell )} \nonumber \\&\quad \times {_2F_1}\, \left( K + 2\lambda + 2, \lambda + \ell + 1 + i \beta ; K + \lambda + 2 -\ell + i \beta ; \zeta ^2 \right) \nonumber \\ =&\frac{1}{(1-\zeta ^2)^{2 \lambda + 1 + 2 \ell }} \frac{\varGamma (i\beta + \lambda + \ell + 1)\varGamma (K-2\ell + 1)}{\varGamma (i\beta + K + \lambda + 2 -\ell )} \nonumber \\&\quad \times {_2F_1}\left( K- 2 \ell + 1, -\lambda -\ell + i \beta ; K + \lambda + 2-\ell + i \beta ; \zeta ^2 \right) , \end{aligned}$$
(80)

the second equality being obtained through the transformation (15.3.3) of Ref. [13].

Inserting (80) and (78) into (74), and including the basis (19) normalization factors, we find that the matrix element (67) can be expressed as the finite sum (24).

Asymptotic behavior of the QS functions

In this appendix we explore the large-distance (\(r=(\xi +\eta )/2 \rightarrow \infty \)) behavior of the “radial” part \({\mathcal {P}}^{|m|(\pm )}_{n_1 n_2}(k;\xi , \eta )\) of the QS functions, starting from the integral representation (30). For the sake of brevity we present here the \((+)\) results only; the \((-)\) case is obtained by complex conjugation. Let us express the Laguerre polynomials \(L_n^{\lambda }\) in (30) as

$$\begin{aligned} L_{n}^{\lambda }(x)= \sum \limits _{\nu =0}^{n}c_{\nu }^{(n, \lambda )}x^{\nu }, \end{aligned}$$
(81)

where the coefficients \(c_{\nu }^{(n, \lambda )}\) are given by (33) [13]. Thus, the integral in (30) is expressed in terms of the integrals

$$\begin{aligned} {\mathcal {I}}_{{\mathcal {M}}, {\mathcal {N}}} = \int \limits _{0}^{1} \hbox {d}s (1 - s)^{i \beta + {\mathcal {M}}}(1 - \zeta s)^{-i \beta + {\mathcal {M}}}(1 - s - \zeta s)^{{\mathcal {N}}}\hbox {e}^{\alpha s}, \end{aligned}$$
(82)

where

$$\begin{aligned} {\mathcal {M}} = \lambda + \nu _1 + \nu _2, \qquad {\mathcal {N}} = n_1 + n_2 - \nu _1 - \nu _2, \end{aligned}$$
(83)

and

$$\begin{aligned} \alpha = 2b(\xi + \eta )\frac{\zeta }{\zeta + 1}. \end{aligned}$$
(84)

Then, using the formal binomial expansions

$$\begin{aligned} \left( 1-\zeta s\right) ^{-i \beta +{\mathcal {M}}}=\sum \limits _{\ell = 0}^{\infty }\frac{\varGamma (-i \beta + {\mathcal {M}} + 1)}{\varGamma (-i \beta + {\mathcal {M}} + 1 - \ell )}\frac{(-\zeta s)^{\ell }}{\varGamma (\ell + 1)} \end{aligned}$$
(85)

and

$$\begin{aligned} (1 - s - \zeta s)^{{\mathcal {N}}} = \sum \limits _{\nu = 0}^{{\mathcal {N}}} \left( \begin{array}{c} {{\mathcal {N}}}\\ {{\mathcal {N}}-\nu } \end{array}\right) (1 - s)^{\nu }(-\zeta s)^{{\mathcal {N}}-\nu }, \end{aligned}$$
(86)

the integral (82) is given by a sum of integrals

$$\begin{aligned} {\mathcal {J}}_{{\mathcal {M}} + \nu , {\mathcal {N}}+\ell -\nu }&\equiv \int \limits _{0}^{1} \hbox {d}s (1 - s)^{i \beta +{\mathcal {M}} + \nu }\,s^{{\mathcal {N}} + \ell -\nu }\,\hbox {e}^{\alpha s}\nonumber \\&=\frac{\varGamma (i \beta +{\mathcal {M}} + \nu + 1)\varGamma ({\mathcal {N}} + \ell -\nu + 1)}{\varGamma ( i \beta + {\mathcal {M}} + {\mathcal {N}} + \ell + 2 )}\nonumber \\&\quad \times M({\mathcal {N}} + \ell -\nu + 1, i \beta + {\mathcal {M}} + {\mathcal {N}} + \ell + 2; \alpha ) \end{aligned}$$
(87)

that are easily identified to be related to the Kummer function M (second equality). Using the asymptotic approximation of the Kummer function for large \(|\alpha |\) (see, e.g., Eq. (13.5.1) in Ref. [13]), we find the following \((\ell \)- and \({\mathcal {N}}\)-independent) asymptotic expression:

$$\begin{aligned} {\mathcal {J}}_{{\mathcal {M}} + \nu , {\mathcal {N}} + \ell -\nu } \simeq \varGamma (i \beta + {\mathcal {M}} + \nu + 1)\, \alpha ^{-(i \beta + {\mathcal {M}} + \nu + 1)}\,\hbox {e}^{\alpha }. \end{aligned}$$
(88)

As a consequence, one can retain (for fixed \({\mathcal {M}}\)) only the \(\nu =0\) term in (86), and therefore the integral (82) is approximated by

$$\begin{aligned} {\mathcal {I}}_{{\mathcal {M}}, {\mathcal {N}}} \simeq (-\zeta )^{{\mathcal {N}}}(1 - \zeta )^{-i \beta + {\mathcal {M}} }\, \varGamma (i \beta + {\mathcal {M}} + 1)\, \alpha ^{-(i \beta + {\mathcal {M}} + 1)}\,\hbox {e}^{\alpha }. \end{aligned}$$
(89)

Finally, after some algebra and using the fact that \(\sqrt{\xi \eta }=\sqrt{x^2+y^2}=r \sin \theta =(1/2) (\xi +\eta ) \sin \theta \), we obtain

$$\begin{aligned} {\mathcal {P}}^{\lambda (+)}_{n_1 n_2}(k; \xi , \eta ) \underset{r\rightarrow \infty }{\longrightarrow } {\mathcal {A}}_{n_1 n_2}^{\lambda (+)}(\theta )\, \frac{\exp \left\{ i \left[ kr-\beta \ln (2kr)\right] \right\} }{r}, \end{aligned}$$
(90)

with the amplitudes \({\mathcal {A}}^{\lambda (+)}_{n_1 n_2}(\theta )\) given by Eq. (32). For the \((-)\) case we simply have \({\mathcal {A}}_{n_1 n_2}^{\lambda (-)}(\theta )=\left[ {\mathcal {A}}_{n_1 n_2}^{\lambda (+)}(\theta ) \right] ^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytsev, S.A., Ancarani, L.U., Zaytsev, A.S. et al. A parabolic quasi-Sturmian approach to quantum scattering by a Coulomb-like potential. Eur. Phys. J. Plus 135, 655 (2020). https://doi.org/10.1140/epjp/s13360-020-00665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00665-5

Navigation