Skip to main content
Log in

Nonlinear Schrödinger equations involved in dark matter halos: modulational instability

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Inspired by the theory of scale relativity, a nonlinear Schrödinger equation has been recently proposed to model dark matter halos. The equation involves a logarithmic nonlinearity associated with an effective temperature and a source of dissipation. Herein, we study the Benjamin–Feir type modulational instability exhibited by this model. We extend our analysis to further generalizations of the equation in the presence of short-range interactions, giving rise to Gross–Pitaevskii-like and Cahn–Hilliard-like equations, as well as to a generalization emerging from the Lynden–Bell distribution. In each case, we establish a criterion leading to modulational instability and study the corresponding growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Formally, \(\ln (exp({iy}))\) is an infinite multivalued function. In the passage from Eqs. (1)–(4) and what follows, we consider the principal value, i.e., \(\ln ( exp({iy}))=iy\) (mod. \(2 \pi \)).

  2. Although known in the literature as the effective temperature, \({T_{\mathrm {eff}}}\) has not the dimension of a temperature but \({T_{\mathrm {eff}}}/\eta _0\) has the dimension of a velocity squared [15].

References

  1. A.C. Scott, The Nonlinear Universe (Springer, Berlin, 2007)

    Google Scholar 

  2. F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106, 140601 (2011)

    Article  ADS  Google Scholar 

  3. L. Debnath, Nonlinear Klein–Gordon and Sine–Gordon equations, in Nonlinear Partial Differential Equations for Scientists and Engineers, ed. by L. Debnath (N. Birkhäuser, Boston, 1997)

    Chapter  Google Scholar 

  4. T.D. Frank, Nonlinear Fokker–Planck Equations: Fundamentals and Applications (Springer, Berlin, 2005)

    MATH  Google Scholar 

  5. C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (Springer, New York, 1999)

    MATH  Google Scholar 

  6. V.E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968)

    Article  ADS  Google Scholar 

  7. N. Akhmediev, A. Ankiewicz, Dissipative Solitons (Springer, Berlin, 2005)

    Book  Google Scholar 

  8. L. de Broglie, Non-linear Wave Mechanics (Elsevier, Amsterdam, 1960)

    MATH  Google Scholar 

  9. L. Erdős, B. Schlein, H.-T. Yau, Phys. Rev. Lett. 98, 040404 (2007)

    Article  ADS  Google Scholar 

  10. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    Article  ADS  Google Scholar 

  11. I. Białynicki-Birula, J. Mycielski, Ann. Phys. 100, 62 (1976)

    Article  ADS  Google Scholar 

  12. A.B. Nassar, Ann. Phys. 331, 317 (2013)

    Article  ADS  Google Scholar 

  13. A.B. Nassar, S. Miret-Artés, Phys. Rev. Lett. 111, 15041 (2013)

    Article  Google Scholar 

  14. T. Yamano, Wave Motion 67, 116 (2016)

    Article  MathSciNet  Google Scholar 

  15. P.H. Chavanis, Phys. Dark Univ. 22, 80 (2018)

    Article  Google Scholar 

  16. J.S. Bullock, M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017)

    Article  ADS  Google Scholar 

  17. D.H. Weinberg, J.S. Bullock, F. Governato, R.K. de Naray, A.H.G. Peter, Proc. Natl. Acad. Sci. USA 112(40), 12249 (2015)

    Article  ADS  Google Scholar 

  18. T. Harko, J. Cosmol. Astropart. Phys. 05, 022 (2011)

    Article  ADS  Google Scholar 

  19. T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)

    Article  ADS  Google Scholar 

  20. T.B. Benjamin, Proc. R. Soc. Lond. Ser. A 299, 59 (1967)

    Article  ADS  Google Scholar 

  21. V.E. Zakharov, L.A. Ostrovsky, Physica D 238, 540 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. G.B. Whitham, Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts (Wiley, New York, 1999)

    Book  Google Scholar 

  23. E.R. Tracy, H.H. Chen, Y.C. Lee, Phys. Rev. Lett. 53, 218 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y.S. Kivshar, M. Salerno, Phys. Rev. E 49, 3543 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  26. T. Yamano, Appl. Math. Lett. 48, 124 (2015)

    Article  MathSciNet  Google Scholar 

  27. L. Wang, J.-H. Zhang, Z.-Q. Wang, C. Liu, M. Li, F.-H. Qi, R. Gu, Phys. Rev. E 93, 012214 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Wang, J.-H. Zhang, C. Liu, M. Li, F.-H. Qi, Phys. Rev. E 93, 062217 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Zakharov, A.A. Gelash, Phys. Rev. Lett. 111, 054101 (2013)

    Article  ADS  Google Scholar 

  30. G. Biondini, D. Mantzavinos, Phys. Rev. Lett. 116, 043902 (2016)

    Article  ADS  Google Scholar 

  31. G. Biondini, S. Li, D. Mantzavinos, S. Trillo, SIAM Rev. 60, 888 (2018)

    Article  MathSciNet  Google Scholar 

  32. A. Kraych, P. Suret, G. El, S. Randoux, Phys. Rev. Lett. 122, 054101 (2019)

    Article  ADS  Google Scholar 

  33. L. Nottale, Int. J. Mod. Phys. A 07, 4899 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. L. Nottale, Scale Relativity and Fractal Space-Time (Imperial College Press, London, 2011)

    Book  Google Scholar 

  35. P.A.M. Dirac, Nature 168, 906 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  36. P.H. Chavanis, Eur. Phys. J. Plus 132, 248 (2017)

    Article  Google Scholar 

  37. T. Yamano, Commun. Nonlinear Sci. Numer. Simulat. 91, 105449 (2020)

    Article  Google Scholar 

  38. T. Jacobson, Black holes and Hawking radiation in spacetime and its analogues, in Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment, No. 870 in Lecture Notes in Physics, ed. by D. Faccio, et al. (Springer, Berlin, 2013), pp. 1–29

    Google Scholar 

  39. K. Ourabah, Phys. Scr. 95, 055005 (2020)

    Article  ADS  Google Scholar 

  40. A. Novick-Cohen, L.A. Segel, Physica D 10, 277 (1984)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Ourabah.

Appendix

Appendix

We detail here the calculations leading to the modulational instability criteria associated with Eqs. (22), (27), and (29).

1.1 A Gross–Pitaevskii-like equation

We consider a plane wave of the form \(\psi (x, t)=\psi _{0} e^{i \sigma (x, t) / 2{\mathcal {D}}}\), with a constant amplitude \(\psi _{0}\). In this case, Eq. (22) gives the condition that must be fulfilled by \(\sigma (x,t)\), in order to have plane wave solutions of Eq. (22), as follows

$$\begin{aligned} \sigma _t = i{\mathcal {D}}\sigma _{xx}-\xi \left[ \sigma -\langle \sigma \rangle \right] -\frac{\sigma _x^2}{2}-v_{\infty }^2 \ln \psi _0 -g|\psi _0|^{2}. \end{aligned}$$
(A.1)

Introducing perturbations of the amplitude and the phase of the plane wave [cf. Eq. (7)], Eq. (22) gives

$$\begin{aligned}&i {\mathcal {D}} \left[ \epsilon _t+\frac{i}{2 {\mathcal {D}}}(\psi _0+\epsilon )(\sigma _t+\theta _t) \right] -\frac{v_{\infty }^2}{2}(\psi _0+\epsilon ) \ln (\psi _0+\epsilon )\nonumber \\&\quad -\,\frac{ \xi }{2} \left[ \sigma -\langle \sigma \rangle +\theta -\langle \theta \rangle \right] (\psi _0+\epsilon ) \nonumber \\&=-{\mathcal {D}}^2 \left[ \epsilon _{xx}+ \frac{i}{2 {\mathcal {D}}} \epsilon _x (\sigma _x + \theta _x)+ \frac{i}{2 {\mathcal {D}}} (\psi _0 + \epsilon )(\sigma _{xx}+ \theta _{xx})\right. \\&\quad \left. +\, \frac{i}{2 {\mathcal {D}}}(\sigma _x + \theta _x) \left[ \epsilon _x + \frac{i}{2 {\mathcal {D}}}(\psi +\epsilon )(\sigma _x + \theta _x)\right] \right] \nonumber \\&\quad +\,\frac{1}{2}g(\psi _0+\epsilon )^3.\nonumber \end{aligned}$$
(A.2)

The real part of Eq. (A.2) [after decomposition in Fourier modes, i.e., Eq. (9)] reads as

$$\begin{aligned} \begin{aligned}&\frac{1}{2}(\psi _0+ \epsilon )(\sigma _t -i \nu \theta )+\frac{v_{\infty }^2}{2}(\psi _0+\epsilon ) \ln (\psi _0+\epsilon ) + \frac{\xi }{2} \left[ \sigma - \langle \sigma \rangle + \theta - \langle \theta \rangle \right] (\psi _0 + \epsilon ) \\&+ {\mathcal {D}}^2 \delta ^2 \epsilon + \frac{(\psi _0 + \epsilon )}{4}(\sigma _x+i \delta \theta )^2 +\frac{1}{2}g(\psi _0+\epsilon )^3=0, \end{aligned} \end{aligned}$$
(A.3)

while the imaginary part remains unchanged from Eq. (11). Proceeding as previously, and neglecting second-order terms, we obtain

$$\begin{aligned} {\left\{ \begin{array}{ll} \left[ \frac{v_{\infty }^2}{2}+ {\mathcal {D}}^2 \delta ^2+g \psi _0^2 \right] \epsilon + \left[ -\frac{i \nu }{2} \psi _0 + \frac{\xi }{2} \psi _0 + i \psi _0 \delta {\mathcal {D}} K\right] \theta =0, \\ \left[ -i \nu + 2 i \delta {\mathcal {D}} K \right] \epsilon - \frac{\psi _0}{2}\delta ^2 \theta =0, \end{array}\right. } \end{aligned}$$
(A.4)

in which we have used the fact that \(\langle \epsilon \rangle = \langle \theta \rangle =0\) and have considered, as in the previous section, a phase \(\sigma (x, t)=2 {\mathcal {D}} (K x-\varOmega t)\). A non-trivial solution of Eq. (A.4) implies

$$\begin{aligned} \delta ^2 \left[ 2 {\mathcal {D}}^2 K^2 - \frac{{\mathcal {D}}^2 \delta ^2}{2}-\frac{v_{\infty }^2}{4}-g \psi _0^2 \right] +\frac{\nu ^2}{2}-2 {\mathcal {D}} \delta K \nu + i \xi \left( \frac{\nu }{2}-{\mathcal {D}} \delta K\right) =0, \end{aligned}$$
(A.5)

which leads to

$$\begin{aligned} \nu = 2{\mathcal {D}}K \delta -i \frac{\xi }{2} \pm \sqrt{{\mathcal {D}}^2 \delta ^4 + \frac{v_{\infty }^2\delta ^2}{2}+2g \psi _0^2 \delta ^2-\frac{\xi ^2}{4}}. \end{aligned}$$
(A.6)

From Eq. (A.6), we identify the condition for an exponential regime as

$$\begin{aligned} \delta < \delta ^* \equiv \frac{1}{\sqrt{2} {\mathcal {D}}} \sqrt{-\frac{v_{\infty }^2}{2}+2g \psi _0^2 \delta ^2+ \sqrt{\left( \frac{v_{\infty }^2}{2}+2g \psi _0^2 \delta ^2\right) ^2+{\mathcal {D}}^2 \xi ^2}}, \end{aligned}$$
(A.7)

from which follows Eq. (23).

1.2 B Cahn–Hilliard-like equation

Considering a one-dimensional plane wave form with a constant amplitude, i.e., \(\psi (x, t)=\psi _{0} e^{i \sigma (x, t) / 2{\mathcal {D}}}\) with \(\psi _0 = cte\), Eq. (27) gives

$$\begin{aligned} \sigma _t = i{\mathcal {D}}\sigma _{xx}-\xi \left[ \sigma -\langle \sigma \rangle \right] -\frac{\sigma _x^2}{2}-v_{\infty }^2 \ln \psi _0-g|\psi _0|^{2}. \end{aligned}$$
(B.1)

That is, when \(\sigma (x,t)\) satisfies Eq. (B.1), the plane wave function is a solution of Eq. (27). Introducing perturbations of amplitude and phase in the plane wave [cf. Eq. (7)], Eq. (27) gives

$$\begin{aligned} \begin{aligned}&i {\mathcal {D}} \left[ \epsilon _t+\frac{i}{2 {\mathcal {D}}}(\psi _0+\epsilon )(\sigma _t+\theta _t) \right] \\&\quad -\,\frac{v_{\infty }^2}{2}(\psi _0+\epsilon ) \ln (\psi _0+\epsilon )-\frac{ \xi }{2} \left[ \sigma -\langle \sigma \rangle +\theta -\langle \theta \rangle \right] (\psi _0+\epsilon ) \\&=-{\mathcal {D}}^2 \left[ \epsilon _{xx}+ \frac{i}{2 {\mathcal {D}}} \epsilon _x (\sigma _x + \theta _x)+ \frac{i}{2 {\mathcal {D}}} (\psi _0 + \epsilon )(\sigma _{xx}+ \theta _{xx})\right. \\&\quad \left. + \,\frac{i}{2 {\mathcal {D}}}(\sigma _x + \theta _x) \left[ \epsilon _x + \frac{i}{2 {\mathcal {D}}}(\psi +\epsilon )(\sigma _x + \theta _x)\right] \right] \\&\quad +\,\frac{1}{2}g(\psi _0+\epsilon )^3+ \chi \left[ (\psi _0+\epsilon )^2 \epsilon _{xx}+(\psi _0+\epsilon ) \epsilon _x^2 \right] , \end{aligned} \end{aligned}$$
(B.2)

the real part of which, upon using Eq. (9), is given by

$$\begin{aligned} \begin{aligned}&\frac{1}{2}(\psi _0+ \epsilon )(\sigma _t -i \nu \theta )+\frac{v_{\infty }^2}{2}(\psi _0+\epsilon ) \ln (\psi _0+\epsilon ) + \frac{\xi }{2} \left[ \sigma - \langle \sigma \rangle + \theta - \langle \theta \rangle \right] (\psi _0 + \epsilon ) \\&\quad +\, {\mathcal {D}}^2 \delta ^2 \epsilon + \frac{(\psi _0 + \epsilon )}{4}(\sigma _x+i \delta \theta )^2 +\frac{1}{2}g(\psi _0+\epsilon )^3+ \chi \left[ (\psi _0+\epsilon )^2 \epsilon _{xx}+(\psi _0+\epsilon ) \epsilon _x^2 \right] =0, \end{aligned} \end{aligned}$$
(B.3)

while the imaginary part remains unchanged [cf. Eq. (11)]. Proceeding in the same lines as previously, we obtain

$$\begin{aligned} {\left\{ \begin{array}{ll} \left[ \frac{v_{\infty }^2}{2}+ {\mathcal {D}}^2 \delta ^2+g \psi _0^2 - \chi \psi _0^2 \delta ^2\right] \epsilon + \left[ -\frac{i \nu }{2} \psi _0 + \frac{\xi }{2} \psi _0 + i \psi _0 \delta {\mathcal {D}} K\right] \theta =0, \\ \left[ -i \nu + 2 i \delta {\mathcal {D}} K \right] \epsilon - \frac{\psi _0}{2}\delta ^2 \theta =0. \end{array}\right. } \end{aligned}$$
(B.4)

A non-trivial solution implies

$$\begin{aligned} \delta ^2 \left[ 2 {\mathcal {D}}^2 K^2 - \frac{{\mathcal {D}}^2 \delta ^2}{2}-\frac{v_{\infty }^2}{4}-g \psi _0^2 -\chi \delta ^2 \psi _0^2 \right] +\frac{\nu ^2}{2}-2 {\mathcal {D}} \delta K \nu + i \xi (\frac{\nu }{2}-{\mathcal {D}} \delta K) =0, \end{aligned}$$
(B.5)

which has the general solution

$$\begin{aligned} \nu = 2{\mathcal {D}}K \delta -i \frac{\xi }{2} \pm \sqrt{{\mathcal {D}}^2 \delta ^4 + \frac{v_{\infty }^2\delta ^2}{2}+2g \psi _0^2 \delta ^2-\frac{\xi ^2}{4}+2 \chi \psi _0^2 \delta ^4}. \end{aligned}$$
(B.6)

In this case, the condition for an exponential regime reads as

$$\begin{aligned} \delta < \delta ^* \equiv \sqrt{\frac{-\frac{v_{\infty }^2}{2}+2g \psi _0^2 \delta ^2+ \sqrt{(\frac{v_{\infty }^2}{2}+2g \psi _0^2 \delta ^2)^2+({\mathcal {D}}^2+2 \chi \psi _0^2) \xi ^2}}{2({\mathcal {D}}^2+2 \chi \psi _0^2)} }, \end{aligned}$$
(B.7)

from which follows Eq. (28).

1.3 C Lynden–Bell distribution

Considering a wave function with a constant amplitude, Eq. (29) gives the condition satisfied by \(\sigma (x,t)\) to have plane wave solutions as

$$\begin{aligned} \sigma _t = i{\mathcal {D}}\sigma _{xx}-\xi \left[ \sigma -\langle \sigma \rangle \right] -\frac{\sigma _x^2}{2}-2\frac{T_{\mathrm {eff}}}{\eta _{0}} \ln \psi _0-\frac{1}{2}\left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3}\psi _0^{4 / 3}. \end{aligned}$$
(C.1)

Introducing perturbations in the amplitude and phase [cf. Eq. (7)], it gives

$$\begin{aligned} \begin{aligned}&i {\mathcal {D}} \left[ \epsilon _t+\frac{i}{2 {\mathcal {D}}}(\psi _0+\epsilon )(\sigma _t+\theta _t) \right] \\&\quad -\,\frac{T_{\mathrm {eff}}}{\eta _{0}}(\psi _0+\epsilon ) \ln (\psi _0+\epsilon )-\frac{ \xi }{2} \left[ \sigma -\langle \sigma \rangle +\theta -\langle \theta \rangle \right] (\psi _0+\epsilon ) \\&=-{\mathcal {D}}^2 \left[ \epsilon _{xx}+ \frac{i}{2 {\mathcal {D}}} \epsilon _x (\sigma _x + \theta _x)+ \frac{i}{2 {\mathcal {D}}} (\psi _0 + \epsilon )(\sigma _{xx}+ \theta _{xx})\right. \\&\quad \left. +\, \frac{i}{2 {\mathcal {D}}}(\sigma _x + \theta _x) \left[ \epsilon _x + \frac{i}{2 {\mathcal {D}}}(\psi +\epsilon )(\sigma _x + \theta _x)\right] \right] \\&\quad +\,\frac{1}{4}\left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3} (\psi _0+ \epsilon )^{7/3}. \end{aligned} \end{aligned}$$
(C.2)

The real part of Eq. (C.2) [after decomposition in Fourier modes, i.e., Eq. (9)] reads as

$$\begin{aligned} \begin{aligned}&\frac{1}{2}(\psi _0+ \epsilon )(\sigma _t -i \nu \theta )+\frac{T_{\mathrm {eff}}}{\eta _{0}}(\psi _0+\epsilon ) \ln (\psi _0+\epsilon ) + \frac{\xi }{2} \left[ \sigma - \langle \sigma \rangle + \theta - \langle \theta \rangle \right] (\psi _0 + \epsilon ) \\&\quad +\, {\mathcal {D}}^2 \delta ^2 \epsilon + \frac{(\psi _0 + \epsilon )}{4}(\sigma _x+i \delta \theta )^2 +\frac{1}{4}\left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3} (\psi _0+\epsilon )^{7/3}=0, \end{aligned} \end{aligned}$$
(C.3)

while the imaginary part is still unchanged. Proceeding in the same lines as previously, we obtain

$$\begin{aligned} {\left\{ \begin{array}{ll} \left[ \frac{T_{\mathrm {eff}}}{\eta _{0}}+ {\mathcal {D}}^2 \delta ^2+ \frac{1}{3}\left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3} \psi _0^{4/3} \right] \epsilon + \left[ -\frac{i \nu }{2} \psi _0 + \frac{\xi }{2} \psi _0 + i \psi _0 \delta {\mathcal {D}} K\right] \theta =0, \\ \left[ -i \nu + 2 i \delta {\mathcal {D}} K \right] \epsilon - \frac{\psi _0}{2}\delta ^2 \theta =0. \end{array}\right. } \end{aligned}$$
(C.4)

A non-trivial solution implies

$$\begin{aligned} \delta ^2 \left[ 2 {\mathcal {D}}^2 K^2 - \frac{{\mathcal {D}}^2 \delta ^2}{2}+\frac{1}{3}\left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3} \psi _0^{4/3}-\frac{T_{\mathrm {eff}}}{2\eta _{0}} \right] +\frac{\nu ^2}{2}-2 {\mathcal {D}} \delta K \nu + i \xi (\frac{\nu }{2}-{\mathcal {D}} \delta K) =0, \end{aligned}$$
(C.5)

which leads to

$$\begin{aligned} \nu = 2{\mathcal {D}}K \delta -i \frac{\xi }{2} \pm \sqrt{{\mathcal {D}}^2 \delta ^4 + \frac{T_{\mathrm {eff}}}{\eta _{0}} \delta ^2-\frac{2}{3} \left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3}\psi _0^{4/3} \delta ^2-\frac{\xi ^2}{4}}. \end{aligned}$$
(C.6)

The condition for an exponential regime reads as

$$\begin{aligned} \delta < \delta ^* \equiv \frac{1}{\sqrt{2} {\mathcal {D}}} \sqrt{- \left( \frac{T_{\mathrm {eff}}}{\eta _{0}}-\frac{2}{3}\left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3} \psi _0^{4/3} \right) + \sqrt{\left( \frac{T_{\mathrm {eff}}}{\eta _{0}}-\frac{2}{3} \left( \frac{3}{4 \pi \eta _{0}}\right) ^{2 / 3}\psi _0^{4/3} \right) ^2+{\mathcal {D}}^2 \xi ^2}}, \end{aligned}$$
(C.7)

leading to Eq. (30).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ourabah, K., Yamano, T. Nonlinear Schrödinger equations involved in dark matter halos: modulational instability. Eur. Phys. J. Plus 135, 634 (2020). https://doi.org/10.1140/epjp/s13360-020-00648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00648-6

Navigation