Skip to main content
Log in

Role of Gilson–Pickering equation for the different types of soliton solutions: a nonlinear analysis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, the soliton solutions of the Gilson–Pickering equation have been constructed using the sinh-Gordon function method (ShGFM) and (G′/G, 1/G)-expansion method, which are applied to obtain exact solutions of nonlinear partial differential equations. A solution function different from the solution function in the classical (G′/G, 1/G)-expansion method has been considered which are based on complex trigonometric, hyperbolic, and rational solutions. By invoking ShGFM and (G′/G, 1/G)-expansion methods, different traveling wave solutions have been investigated. For the sake of avoiding the complex calculations, the ready package program has been tackled. The comparative analysis of sinh-Gordon function and (G′/G, 1/G)-expansion methods has shown several differences and similarities. A comparative analysis of ShGFM and (G′/G, 1/G)-expansion methods assures that the (G′/G, 1/G)-expansion method has been found to be more intensive, powerful, reliable and effective method for the Gilson–Pickering equation. The graphical illustrations of two-, three-dimensional, and contour graphs have been depicted as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25(3), 035022 (2016)

    ADS  Google Scholar 

  2. T.A. Sulaiman, H. Bulut, A. Yokus, H.M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. 93(5), 647–656 (2019)

    ADS  Google Scholar 

  3. A. Yokus, H.M. Baskonus, T.A. Sulaiman, H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionarysystem. Numer. Methods Partial Differ. Equ. 34(1), 211–227 (2018)

    MATH  Google Scholar 

  4. H. Durur, M. Şenol, A. Kurt, O. Taşbozan, Zaman-Kesirli Kadomtsev–Petviashvili Denkleminin Conformable Türev ile Yaklaşık Çözümleri. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 12(2), 796–806 (2020)

    Google Scholar 

  5. D.G. Prakasha, P. Veeresha, H.M. Baskonus, Residual power series method for fractional Swift-Hohenberg equation. Fract. Fract. 3(1), 9 (2019)

    Google Scholar 

  6. K.K. Ali, R. Yilmazer, A. Yokus, H. Bulut, Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics. Phys. A Stat. Mech. İts Appl. 548(C), 124327 (2020)

    MathSciNet  Google Scholar 

  7. A. Yokuş, H. Durur, Complex hyperbolic traveling wave solutions of Kuramoto-Sivashinsky equation using (1/G′) expansion method for nonlinear dynamic theory. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21(2), 590–599 (2019)

    Google Scholar 

  8. H. Durur, A. Yokuş, (1/G′)-Açılım Metodunu Kullanarak Sawada-Kotera Denkleminin Hiperbolik Yürüyen Dalga Çözümleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 19(3), 615–619 (2019)

    Google Scholar 

  9. R. Silambarasan, H.M. Baskonus, H. Bulut, Jacobi elliptic function solutions of the double dispersive equation in the Murnaghan’s rod. Eur. Phys. J. Plus 134(3), 125 (2019)

    Google Scholar 

  10. H. Durur, Different types analytic solutions of the (1 + 1)-dimensional resonant nonlinear Schrödinger’s equation using (G′/G)-expansion method. Mod. Phys. Lett. B 34(03), 2050036 (2020)

    ADS  MathSciNet  Google Scholar 

  11. H. Khan, S. Barak, P. Kumam, M. Arif, Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the (G′/G)-Expansion Method. Symmetry 11(4), 566 (2019)

    MATH  Google Scholar 

  12. I. Aziz, B. Šarler, The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. Math. Comput. Model. 52(9–10), 1577–1590 (2010)

    MathSciNet  MATH  Google Scholar 

  13. I. Aziz, M. Asif, Haar wavelet collocation method for three-dimensional elliptic partial differential equations. Comput. Math. Appl. 73(9), 2023–2034 (2017)

    MathSciNet  MATH  Google Scholar 

  14. D. Kaya, A. Yokus, A numerical comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations. Math. Comput. Simul. 60(6), 507–512 (2002)

    MathSciNet  MATH  Google Scholar 

  15. D. Kaya, A. Yokus, A decomposition method for finding solitary and periodic solutions for a coupled higher-dimensional Burgers equations. Appl. Math. Comput. 164(3), 857–864 (2005)

    MathSciNet  MATH  Google Scholar 

  16. B. Faraj, M. Modanli, Using difference scheme method for the numerical solution of telegraph partial differential equation. J. Garmian Univ. 3, 157–163 (2017)

    Google Scholar 

  17. O. Tasbozan, A. Kurt, H. Durur, Implementation of New Sub Equation Method To Time Fractional Partial Differential Equations. Int. J. Eng. Math. Phys. 1, 1–12 (2019)

    Google Scholar 

  18. A. Kurt, O. Tasbozan, H. Durur, The exact solutions of conformable fractional partial differential equations using new sub equation method. Fundam. J. Math. Appl. 2(2), 173–179 (2020)

    Google Scholar 

  19. M. Yavuz, N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations. Therm. Sci. 22(Suppl. 1), 185–194 (2018)

    Google Scholar 

  20. A. Yokus, H. Durur, H. Ahmad, S.W. Yao, Construction of Different Types Analytic Solutions for the Zhiber-Shabat Equation. Mathematics 8(6), 908 (2020)

    Google Scholar 

  21. H. Ahmad, M. Rafiq, C. Cesarano, H. Durur, Variational iteration algorithm-I with an auxiliary parameter for solving boundary value problems. Earthline J. Math. Sci. 3(2), 229–247 (2020)

    Google Scholar 

  22. H. Durur, O. Taşbozan, A. Kurt, M. Şenol, New wave solutions of time fractional Kadomtsev–Petviashvili equation arising in the evolution of nonlinear long waves of small amplitude. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 12(2), 807–815 (2020)

    Google Scholar 

  23. M.A. Shallal, K.K. Ali, K.R. Raslan, H. Rezazadeh, A. Bekir, Exact solutions of the conformable fractional EW and MEW equations by a new generalized expansion method. J. Ocean Eng. Sci. (2020). https://doi.org/10.1016/j.joes.2019.12.004

  24. H. Durur, A. Kurt, O. Tasbozan, New Travelling Wave Solutions for KdV6 Equation Using Sub Equation Method. Appl. Math. Nonlinear Sci. 5(1), 455–460 (2020)

    MathSciNet  Google Scholar 

  25. S.M. Mirhosseini-Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method. Pramana 94(1), 1–12 (2020)

    Google Scholar 

  26. H. Ahmad, A.R. Seadawy, T.A. Khan, P. Thounthong, Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. J. Univ. Sci. 14(1), 346–358 (2020)

    Google Scholar 

  27. A.R. Seadawy, A.H. Arnous, A. Biswas, M. Belic, Optical solitons with Sasa-Satsuma equation by F-expansion scheme. Optoelectron. Adv. Mater. Rapid Commun. 13(1–2), 31–36 (2019)

    Google Scholar 

  28. A. Yokus, H. Durur, H. Ahmad, Hyperbolic Type Solutions For The Couple Boıtı-Leon-Pempinelli System. Facta Univ. Ser. Math. Inform. 35(2), 523–531 (2020)

    MathSciNet  Google Scholar 

  29. H. Durur, A. Yokuş, Analytical solutions of Kolmogorov–Petrovskii–Piskunov equation. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(2), 628–636 (2020)

    Google Scholar 

  30. H. Ahmad, T.A. Khan, H. Durur, G.M. Ismail, A. Yokus, Analytic approximate solutions of diffusion equations arising in oil pollution. J. Ocean Eng. Sci. (2020). https://doi.org/10.1016/j.joes.2020.05.002

  31. H. Durur, O. Tasbozan, A. Kurt, New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations. Appl. Math. Nonlinear Sci. 5(1), 447–454 (2020)

    MathSciNet  Google Scholar 

  32. M. Yavuz, A. Yokus, Analytical and numerical approaches to nerve impulse model of fractional-order. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22476

  33. A. Chen, W. Huang, S. Tang, Bifurcations of travelling wave solutions for the Gilson-Pickering equation. Nonlinear Anal. Real World Appl. 10(5), 2659–2665 (2009)

    MathSciNet  MATH  Google Scholar 

  34. X. Fan, S. Yang, D. Zhao, Travelling wave solutions for the Gilson-Pickering equation by using the simplified G/G-expansion method. Int. J. Nonlinear Sci. 8, 368–373 (2009)

    MathSciNet  MATH  Google Scholar 

  35. T. Ak, A. Saha, S. Dhawan, Performance of a hybrid computational scheme on traveling waves and its dynamic transition for Gilson-Pickering equation. Int. J. Mod. Phys. C 30(04), 1950028 (2019)

    ADS  MathSciNet  Google Scholar 

  36. H.M. Baskonus, Complex soliton solutions to the Gilson-Pickering model. Axioms 8(1), 18 (2019)

    MathSciNet  MATH  Google Scholar 

  37. K.K. Ali, R. Yilmazer, S. Noeiaghdam, Wave solutions of Gilson–Pickering Equation (2019). arXiv preprint arXiv:1907.06254

  38. G. Ebadi, A.H. Kara, M.D. Petković, A. Biswas, Soliton solutions and conservation laws of the Gilson-Pickering equation. Waves Random Complex Media 21(2), 378–385 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  39. F. Zabihi, M. Saffarian, A not-a-knot meshless method with radial basis functions for numerical solutions of Gilson-Pickering equation. Eng. Comput. 34(1), 37–44 (2018)

    Google Scholar 

  40. T. Muhammad, U.A. Aziz, S.O. Mohamed, B. Dumitru, M.A. Maysaa, Abundant periodic wave solutions for fifth-order Sawada-Kotera equations. Results Phys. 17, 103105 (2020)

    Google Scholar 

  41. N. Raza, S. Arshed, Chiral bright and dark soliton solutions of Schrödinger’s equation in (1+2)-dimensions. Ain Shams Eng. J. 20, 5–8 (2020). https://doi.org/10.1016/j.asej.2020.03.018

    Article  Google Scholar 

  42. A.A. Kashif, J.F. Gomez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 134, 101–113 (2019). https://doi.org/10.1140/epjp/i2019-12507-4

    Article  Google Scholar 

  43. Ghanbari. Behzad, Raza N, An analytical method for soliton solutions of perturbed Schrödinger’s equation with quadratic-cubic nonlinearity. Mod. Phys. Lett. B 33(3), 1950018 (2019)

    Google Scholar 

  44. A.A. Kashif, A. Abdon, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal–fractional differentiations. Eur. Phys. J. Plus 135, 226–242 (2020). https://doi.org/10.1140/epjp/s13360-020-00136-x

    Article  Google Scholar 

  45. N. Raza, A. Zubair, Bright, dark and dark-singular soliton solutions of nonlinear Schrödinger’s equation with spatio-temporal dispersion. J. Mod. Opt. 65, 1975–1982 (2018)

    ADS  Google Scholar 

  46. K.A. Abro, A. Yildirim, An analytic and mathematical synchronization of micropolar nanofluid by Caputo–Fabrizio approach. Sci. Iran. Int. J. Sci. Technol. 26(6), 3917–3927 (2019). https://doi.org/10.24200/sci.2019.52437.2717

    Article  Google Scholar 

  47. U.A. Aziz, T. Muhammad, U.R. Hamood, Singular and bright singular combo optical solitons in birefringent to the Biswas-Arshed equation. Optik 210, 164489 (2020)

    ADS  Google Scholar 

  48. N. Raza, A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrodinger’s equation. Waves Rand. Compl. Med. (2018). https://doi.org/10.1080/17455030.2018.1451009

    Article  Google Scholar 

  49. N. Raza, I. Murtaza, S. Sial, M. Younis, On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media 28, 553–569 (2017)

    ADS  MathSciNet  Google Scholar 

  50. A.A. Kashif, A. Abdon, Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid. Phys. Scr. 95, 035228 (2020). https://doi.org/10.1088/1402-4896/ab560c

    Article  Google Scholar 

  51. N. Raza, S. Sial, M. Kaplan, Exact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution. Optik 156, 628–634 (2018)

    ADS  Google Scholar 

  52. K.A. Abro, S. Ambreen, A. Abdon, Thermal stratification of rotational second-grade fluid through fractional differential operators. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09312-8

    Article  Google Scholar 

  53. A. Javid, N. Raza, Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model. Optik 171, 120–129 (2018)

    ADS  Google Scholar 

  54. L. Bhojraj, A.A. Kashif, W.S. Abdul, Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09429-w

    Article  Google Scholar 

  55. N. Raza, A. Javid, Optical dark and singular solitons to the Biswas-Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1049–1057 (2018)

    ADS  Google Scholar 

  56. K.A. Abro, F.G.A. Jose, Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6655

    Article  Google Scholar 

  57. A. Javid, N. Raza, M.S. Osman, Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71, 362–366 (2019)

    ADS  MathSciNet  Google Scholar 

  58. C. Gilson, A. Pickering, Factorization and Painlevé analysis of a class of nonlinear third-order partial differential equations. J. Phys. A Math. Gen. 28(10), 2871 (1995)

    ADS  MATH  Google Scholar 

  59. B. Fornberg, G.B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 289(1361), 373–404 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  60. G.B. Whitham, Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 299(1456), 6–25 (1967)

    ADS  MATH  Google Scholar 

  61. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  62. P. Rosenau, J.M. Hyman, Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70(5), 564 (1993)

    ADS  MATH  Google Scholar 

  63. R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  64. B. Fuchssteiner, A.S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4(1), 47–66 (1981)

    MathSciNet  MATH  Google Scholar 

  65. M.J. Ablowitz, M.A. Ablowitz, P.A. Clarkson, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  66. A. Yokus, B. Kuzu, U. Demiroğlu, Investigation of solitary wave solutions for the (3 + 1)-dimensional Zakharov-Kuznetsov equation. Int. J. Mod. Phys. B 33(29), 1950350 (2019)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokuş, A., Durur, H., Abro, K.A. et al. Role of Gilson–Pickering equation for the different types of soliton solutions: a nonlinear analysis. Eur. Phys. J. Plus 135, 657 (2020). https://doi.org/10.1140/epjp/s13360-020-00646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00646-8

Navigation