Skip to main content
Log in

Variational principles for ideal MHD of steady incompressible flows via Lie-point symmetries with application to the magnetic structures of bipolar sunspots

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, Lie-point symmetries and conservation laws for the generalized Grad–Shafranov equation (GGSE) for symmetric magnetohydrodynamic (MHD) fluids with steady, inhomogeneous, incompressible flows are derived. The adjointness of that equation is discussed via a Lie operator. We noted that the GGSE can be self-adjoint, quasi-self-adjoint or nonlinear self-adjoint according to a physical magnetic flux quantity. With the aid of the derived symmetries, a general solution and construction for obtaining the solutions of the whole nonlinear MHD system of the considered flows are presented. Also, the linear stability of that general solution is discussed. To formulate variational principles for the problem, Lagrangians of first and second order are derived and used to obtain the conserved quantities for these flows. An application that may be of interest for magnetic structures of the bipolar sunspots groups is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.H. Ibragimov, T. Kolsrud, Lagrangian approach to evolution equations: symmetries and conservation laws. Nonlinear Dyn. 36, 29–40 (2004)

    Article  MathSciNet  Google Scholar 

  2. A.H. Kara, F.M. Mahomed, Noether-type symmetries and conservtion laws via partial Lagrangians. Nonlinear Dyn. 45, 367–383 (2006)

    Article  Google Scholar 

  3. G.W. Bluman, E. Temuerchaolu, S.C. Anco, New conservation laws obtained directly from symmetry action on a known conservation law. J. Math. Anal. Appl. 322, 233–250 (2006)

    Article  MathSciNet  Google Scholar 

  4. N.H. Ibragimov, Integrating factors, adjoint equations and Lagrangians. J. Math. Anal. Appl. 313, 742–757 (2006)

    Article  MathSciNet  Google Scholar 

  5. N.H. Ibragimov, A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

    Article  MathSciNet  Google Scholar 

  6. Y. Bozhkov, S. Dimas, N.H. Ibragimov, Conservation laws for a coupled variable-cofficient modified Korteweg-de Vries in a two-layer fluid model. Commun. Nonlinear Sci. Numer. Simul. 18, 1127–1135 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Muatjetjeja, C.M. Khalique, First integrals for a generalized coupled Lane–Emden system. Nonlinear Anal. RWA 12, 1201–1212 (2011)

    Article  MathSciNet  Google Scholar 

  8. N.H. Ibragimov, Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 44, 432002 (2011)

    Article  ADS  Google Scholar 

  9. N.H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws. Arch. ALGA 7(8), 1–90 (2011)

    Google Scholar 

  10. M.L. Gandarias, Weak self-adjoint differential equations. J. Phys. A Math. Theor. 44, 262001 (2011)

    Article  ADS  Google Scholar 

  11. M.S. Bruzón, M.L. Gandarias, N.H. Ibragimov, Self-adjoint subclasses of generalized thin film equations. J. Math. Anal. Appl. 357, 307–313 (2009)

    Article  MathSciNet  Google Scholar 

  12. N.H. Ibragimov, M. Torrisi, R. Tracina, Quasi-self adjoint nonlinear wave equations. J. Phys. A Math. Theor. 43, 442001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. N.H. Ibragimov, M. Torrisi, R. Tracina, Self-adjointness and conservation laws of a generalized Burgers equation. J. Phys. A Math. Theor. 44, 145201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Torrisi, R. Tracina, Quasi self-adjoint reaction diffusion systems. AIP Conf. Proc. 1389, 1386–1389 (2011)

    ADS  Google Scholar 

  15. I.L. Freire, self-adjoint sub-classes of third and fourth-order evolution equations. Appl. Math. Comput. 217, 9467–9473 (2009)

    MathSciNet  MATH  Google Scholar 

  16. R. Tracina, Nonlinear self-adjointness of a class of generalized diffusion equations. AIP Conf. Proc. 1479, 1358–1360 (2012)

    Article  ADS  Google Scholar 

  17. M. Torrisi, R. Tracina, Quasi self-adjointness of a class of third order nonlinear dispersive equations. Nonlinear Anal. Real World Appl. 14(3), 1496–1502 (2013)

    Article  MathSciNet  Google Scholar 

  18. X. Bin, L.X. Qiang, Classification, reduction, group invariant solutions and conservation laws of the Gardner-KP equation. Appl. Math. Comput. 215, 1244–1250 (2009)

    MathSciNet  MATH  Google Scholar 

  19. M.L. Gandarias, M.S. Bruzón, Some conservation laws for forced KdV equation. Nonlinear Anal. Real World Appl. 13, 2692–2700 (2012)

    Article  MathSciNet  Google Scholar 

  20. L.X. Zhang, Conservation laws of the (2+1)-dimensional KP equation and Burgers equation with variable cofficients and cross terms. Appl. Math. Comput. 219, 4865–4879 (2013)

    MathSciNet  MATH  Google Scholar 

  21. A.R. Adem, C.M. Khalique, Exact solutions and conservation laws of a two-dimensional integrable generalization of the Kaup-Kupershmidt equation. J. Appl. Math. 1155, 647313 (2013)

    MathSciNet  MATH  Google Scholar 

  22. R. Tracinà, On the nonlinear self-adjointness of the Zakharov-Kuznetsov equation. Commun. Nonlinear Sci. Numer. Simul. 19, 377–382 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z. Cao, Y. Lin, Lie-point symmetries, conservation laws and solutions of a space dependent reaction-diffusion equation. Appl. Math. Comput. 248, 386–398 (2014)

    MathSciNet  MATH  Google Scholar 

  24. M. Nadjafikhah, N. pourrostami, Self-adjointness, Group classification and Conservation laws of an Extended Camassa-Holm equation, J. Generalized Lie. Theory Appl. S2:004 (2015)

  25. L. Wei, J. Zhang, Self-adjointness and conseration laws for Kadomtsev–Petviashvili–Burgers equation. Nonlinear Anal. Real World Appl. 23, 123–128 (2015)

    Article  MathSciNet  Google Scholar 

  26. A.R. Adem, C.M. Khalique, M. Molati, Group classification, symmetry reductions and exact solutions of a generalized Korteweg-de Vries-Burgers. Appl. Math. Inf. Sci. 9, 501–506 (2015)

    Article  MathSciNet  Google Scholar 

  27. S.C. Anco, E.D. Avdonina, A. Gainetdinova, L.R. Galiakberova, N.H. Ibragimov, T. Wolf, Symmetries and conservation laws of the generalized Krichever–Novikov equation. J. Phys. A Math. Theor. 49, 105201 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. X.W. Zhou, L. Wang, A variational principle for coupled nonlinear Schrödinger equations with variable cofficients and high nonlinearity. Commun. Math. Appl. 61, 2035–2038 (2011)

    Article  Google Scholar 

  29. M. Kraus, O. Maj, Variational integrators for nonvariational partial differential equations. Physica D Nonlinear Phenomena 310, 37–71 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Kraus, E. Tassi, D. Grasso, Variational integrators for reduced magnetohydrodynamics. J. Comput. Phys. 321, 435–458 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. R.L. White, R.D. Hazeltine, Symmetry analysis of the Grad–Shafranov equation. Phys. Plasmas 16, 123101 (2009)

    Article  ADS  Google Scholar 

  32. G. Cicogna, F. Ceccherini, F. Pegoraro, Applications of symmetry methods to the theory of plasma physics. SIGMA 2, 17 (2006)

    MathSciNet  MATH  Google Scholar 

  33. G. Cicogna, F. Pegoraro, F. Ceccherini, Symmetries, weak symmetries, and related solutions of the Grad–Shafranov equation. Phys. Plasmas 17, 102506 (2010)

    Article  ADS  Google Scholar 

  34. G.J.A. Petrie, K. Tsinganos, T. Neukirch, Steady 2D prominence-like solutions of the MHD equations with field-aligned compressible flow. Astron. Astrophys. 429, 1081–1092 (2005)

    Article  ADS  Google Scholar 

  35. J.P. Goedbloed, R. Keppens, S. Poedts, Advanced Magnetohydrodynamics with Applications to Laboratory and Asrrophysical Plasmas (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  36. G.N. Throumoulopoulos, H. Tasso, G. Poulipoulis, J. Phys. A: Math. Theor. 42, 335501 (2009)

  37. P.J. Morrison, \(\delta ^2\)F: a generalized energy principle for determining linear and nonlinear stability. Bull. Am. Phys. Soc. 31, 1609 (1986)

    Google Scholar 

  38. A.H. Khater, S.M. Moawad, D.K. Callebaut, Linear and nonlinear stability analysis for two-dimensional ideal magnetohydrodynamics with incompressible flows. Phys. Plasmas 12, 012316 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. D.D. Holm, J.E. Marsden, T. Ratiu, A. Weinstein, Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1–116 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  40. R.D. Hazeltine, D.D. Holm, J.E. Marsden, P.J. Morrison, Generalized Pois- son brackets and nonlinear Liapunov stability - Application to reduced MHD, International Conference on Plasma Physics Proceedings, ed by M.Q. Tran and M.L. Sawley, (Ecole Polytechnique Federale de Lausanne, Lausanne, 1984), p. 203

  41. K.L. Cheung, Exact solutions for the two-dimensional incompressible magnetohydrodynamics equations. Appl. Math. Sci. 8, 5915–5922 (2014)

    Google Scholar 

  42. C. Nabert, K.H. Glassmeier, F. Plaschke, A new method for solving the MHD equations in the magnetosheath. Ann. Geophys. 31, 419–437 (2013)

    Article  ADS  Google Scholar 

  43. Q.X. Wu, Zw Xia, W.H. Yang, Traveling wave solutions of the incompressible ideal Hall magnetohydrodynamics. Chin. Phys. Lett. 33, 065204–065206 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his constructive and useful comments, which helped in putting the manuscript into its final form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Moawad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moawad, S.M. Variational principles for ideal MHD of steady incompressible flows via Lie-point symmetries with application to the magnetic structures of bipolar sunspots. Eur. Phys. J. Plus 135, 585 (2020). https://doi.org/10.1140/epjp/s13360-020-00598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00598-z

Navigation