Skip to main content
Log in

Majorana dark matter and neutrino mass with \(S_{3}\) symmetry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This model includes a minimal extension of the standard model with \(S_3\) and \(Z_2\) symmetries to explain neutrino masses and mixing along with the dark matter phenomenology. Neutrino phenomenology is explored, consistent with the \(3 \sigma \) observation of oscillation parameters, and a nonzero reactor mixing angle (\(\theta _{13}\)) is obtained. The \(S_3\) singlet Majorana neutrino couples to the third generation of leptons, which gives a correct relic density compatible with the Planck data. This model does not allow tree-level direct detection; therefore, we discuss the loop-level effective interaction with the nucleus mediated by gauge boson, which is allowed by the experimental limit of LUX and PICO-60. Also the constraints from the lepton flavor violating rare decay mode are commented. However, this model has some limitations to address the exact quark mixing and is consistent with the block diagonal structure of quark mixing matrix and nearly massless first-generation quarks. This can be resolved by the extension of the quark or Higgs sector of the present model, which is not explored in the current analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since all the required information is provided in the manuscript, there is no such additional data to be attached.]

References

  1. S.N. Ahmed et al., [SNO Collaboration] Phys. Rev. Lett. 92, 181301 (2004). arXiv:nucl-ex/0309004

  2. M. Apollonio et al., [CHOOZ Collaboration] Eur. Phys. J. C 27, 331 (2003). arXiv:hep-ex/0301017

  3. T. Araki et al. [KamLAND Collaboration] Phys. Rev. Lett. 94, 081801 (2005). arXiv:hep-ex/0406035

  4. L. Canetti, M. Drewes, M. Shaposhnikov, New J. Phys. 14, 095012 (2012)

    Article  ADS  Google Scholar 

  5. P.A.R. Ade et al. [Planck Collaboration] Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589

  6. P. Di Gangi [XENON Collaboration] Nuovo Cim. C 41(3), 109 (2018)

  7. S.F. King, J. Phys. Conf. Ser. 631(1), 012005 (2015)

    Article  Google Scholar 

  8. S.F. King, C. Luhn, Rept. Prog. Phys. 76, 056201 (2013)

    Article  ADS  Google Scholar 

  9. P. Chattopadhyay, K.M. Patel, Nucl. Phys. B 921, 487 (2017)

    Article  ADS  Google Scholar 

  10. S.T. Petcov. arXiv:1711.10806 [hep-ph], S. T. Petcov, A. V. Titov. arXiv:1804.00182 [hep-ph]

  11. G. Sartori, Phys. Lett. 82B, 255 (1979)

    Article  ADS  Google Scholar 

  12. S. Mishra, M. Kumar Behera, R. Mohanta, S. Patra, S. Singirala. arXiv:1907.06429 [hep-ph]

  13. F. Wilczek, A. Zee, Phys. Lett. 70B, 418 (1977) Erratum: [Phys. Lett. 72B, 504 (1978)]

  14. N. Haba, K. Yoshioka, Nucl. Phys. B 739, 254 (2006). arXiv:hep-ph/0511108

  15. A. De Rujula, H. Georgi, S.L. Glashow, Ann. Phys. 109, 258 (1977). https://doi.org/10.1016/0003-4916(77)90172-5

    Article  ADS  Google Scholar 

  16. D.S. Akerib et al., [LUX Collaboration] Phys. Rev. Lett. 116(16), 161301 (2016). arXiv:1512.03506

  17. P. Cushman et al., arXiv:1310.8327 [hep-ex]

  18. E. Aprile [XENON1T Collaboration] Springer Proc. Phys. 148, 93 (2013). arXiv:1206.6288 [astro-ph.IM]

  19. J. Aleksić et al., JCAP 1402, 008 (2014)

    Article  ADS  Google Scholar 

  20. D.C. Malling et al., arXiv:1110.0103 [astro-ph.IM]

  21. M.G. Aartsen et al., [IceCube Collaboration] Phys. Rev. Lett. 110(13), 131302 (2013) arXiv:1212.4097 [astro-ph.HE]

  22. M. Ackermann et al., [Fermi-LAT Collaboration] Phys. Rev. D 88, 082002 (2013). arXiv:1305.5597 [astro-ph.HE]

  23. M. Aguilar et al., [AMS Collaboration] Phys. Rev. Lett. 110, 141102 (2013)

  24. A. Abramowski et al., [H.E.S.S. Collaboration] Phys. Rev. Lett. 110, 041301 (2013) arXiv:1301.1173 [astro-ph.HE]

  25. C. Amole et al., [PICO Collaboration] Phys. Rev. Lett. 118(25) 251301 (2017). arXiv:1702.07666 [astro-ph.CO]

  26. D.S. Akerib et al., [LUX Collaboration] Phys. Rev. Lett. 118(25), 251302 (2017). arXiv:1705.03380 [astro-ph.CO]

  27. J. Herrero-Garcia, E. Molinaro, M.A. Schmidt, Eur. Phys. J. C 78(6), 471 (2018)

    Article  ADS  Google Scholar 

  28. E. Aprile et al., [XENON Collaboration] Phys. Rev. Lett. 119(18), 181301 (2017). arXiv:1705.06655 [astro-ph.CO]

  29. G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005)

    Article  ADS  Google Scholar 

  30. N. Craig, A. Katz, JCAP 1510, 054 (2015)

    Article  ADS  Google Scholar 

  31. N. Aghanim et al., [Planck Collaboration]. arXiv:1807.06209 [astro-ph.CO]

  32. S. Singirala, R. Mohanta, S. Patra, S. Rao, JCAP 1811, 026 (2018)

    Article  ADS  Google Scholar 

  33. S. Mishra, S. Singirala, S. Sahoo, arXiv:1908.09187 [hep-ph]

  34. P. Agrawal, Z. Chacko, C. Kilic, R.K. Mishra, arXiv:1003.1912 [hep-ph]

  35. D. Meloni, S. Morisi, E. Peinado, J. Phys. G 38, 015003 (2011)

    Article  ADS  Google Scholar 

  36. J. Kubo, A. Mondragon, M. Mondragon, E. Rodriguez-Jauregui, Prog. Theor. Phys. 109, 795 (2003) Erratum: [Prog. Theor. Phys. 114, 287 (2005)]. arXiv:hep-ph/0302196

  37. J. Kubo, Phys. Lett. B 578, 156 (2004) Erratum: [Phys. Lett. B 619, 387 (2005)]. arXiv:hep-ph/0309167

  38. J. Kubo, H. Okada, F. Sakamaki, Phys. Rev. D 70, 036007 (2004)

    Article  ADS  Google Scholar 

  39. A. Mondragon, AIP Conf. Proc. 857(2), 266 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Mondragon, M. Mondragon, E. Peinado, Phys. Rev. D 76, 076003 (2007)

    Article  ADS  Google Scholar 

  41. A. Mondragon, M. Mondragon, E. Peinado, J. Phys. A 41, 304035 (2008)

    Article  Google Scholar 

  42. F. Gonzalez Canales, A. Mondragon, M. Mondragon, Fortsch. Phys. 61, 546 (2013)

    Article  ADS  Google Scholar 

  43. C. Espinoza, E.A. Garcés, M. Mondragón, H. Reyes-González, Phys. Lett. B 788, 185 (2019). arXiv:1804.01879 [hep-ph]

  44. D. Emmanuel-Costa, O. M. Ogreid, P. Osland, M. N. Rebelo, JHEP 1602, 154 (2016) Erratum: [JHEP 1608, 169 (2016)]. arXiv:1601.04654 [hep-ph]

  45. Y. Koide, Phys. Rev. D 73, 057901 (2006)

    Article  ADS  Google Scholar 

  46. M.P. Bento, H.E. Haber, J.C. Romão, J.P. Silva. arXiv:1708.09408 [hep-ph]

  47. T. Nomura, H. Okada. arXiv:1708.08737 [hep-ph]

  48. N. Chakrabarty, I. Chakraborty. arXiv:1801.05272 [hep-ph]

  49. D. Borah, A. Gupta. arXiv:1706.05034 [hep-ph]

  50. K. Kannike, Eur. Phys. J. C 72, 2093 (2012)

    Article  ADS  Google Scholar 

  51. T. Araki, J. Kubo, E.A. Paschos, Eur. Phys. J. C 45, 465 (2006)

    Article  ADS  Google Scholar 

  52. S. Mishra, A. Giri. arXiv:1909.12147 [hep-ph]

  53. D. Cogollo, J.P. Silva, Phys. Rev. D 93(9), 095024 (2016). https://doi.org/10.1103/PhysRevD.93.095024

    Article  ADS  Google Scholar 

  54. D. Das, U.K. Dey, P.B. Pal, Phys. Rev. D 96(3), 031701 (2017). https://doi.org/10.1103/PhysRevD.96.031701

    Article  ADS  Google Scholar 

  55. D. Das, P.B. Pal, Phys. Rev. D 98(11), 115001 (2018). https://doi.org/10.1103/PhysRevD.98.115001

    Article  ADS  MathSciNet  Google Scholar 

  56. F. Canales, A. Mondragón, M. Mondragón, U. Saldaña Salazar, L. Velasco-Sevilla, J. Phys. Conf. Ser. 447, 012053 (2013). https://doi.org/10.1088/1742-6596/447/1/012053

  57. O. Felix, A. Mondragon, M. Mondragon, E. Peinado, AIP Conf. Proc. 917(1), 383–389 (2007). https://doi.org/10.1063/1.2751980

    Article  ADS  Google Scholar 

  58. F. Botella, G. Branco, M. Rebelo, Phys. Lett. B 722, 76–82 (2013). https://doi.org/10.1016/j.physletb.2013.03.022

    Article  ADS  Google Scholar 

  59. F.J. Botella, G. Branco, M. Nebot, M. Rebelo, J. Silva-Marcos, Eur. Phys. J. C 77(6), 408 (2017). https://doi.org/10.1140/epjc/s10052-017-4933-3

    Article  ADS  Google Scholar 

  60. F. Botella, G. Branco, M. Rebelo, Phys. Lett. B 687, 194–200 (2010). https://doi.org/10.1016/j.physletb.2010.03.014

    Article  ADS  Google Scholar 

  61. P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle, Phys. Lett. B 782, 633 (2018)

    Article  ADS  Google Scholar 

  62. E. Ma, Phys. Rev. D 73, 077301 (2006)

    Article  ADS  Google Scholar 

  63. D. Borah, D. Nanda, N. Narendra, N. Sahu. arXiv:1810.12920 [hep-ph]

  64. A. Das, T. Nomura, H. Okada, S. Roy, Phys. Rev. D 96(7), 075001 (2017)

    Article  ADS  Google Scholar 

  65. D. Borah, A. Dasgupta, S.K. Kang. arXiv:1806.04689 [hep-ph]

  66. E.W. Kolb, M.S. Turner, Front. Phys. 69, 1 (1990)

    Google Scholar 

  67. R. J. Scherrer, M. S. Turner, Phys. Rev. D 33, 1585 (1986) Erratum: [Phys. Rev. D 34, 3263 (1986)]

  68. P.A.R. Ade et al., [Planck Collaboration] Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 [astro-ph.CO]

  69. A. Ibarra, C.E. Yaguna, O. Zapata, Phys. Rev. D 93(3), 035012 (2016)

    Article  ADS  Google Scholar 

  70. A. Airapetian et al., [HERMES Collaboration.] Phys. Rev. D 75, 012007 (2007). arXiv:hep-ex/0609039

  71. S. Mihara, J.P. Miller, P. Paradisi, G. Piredda, Ann. Rev. Nucl. Part. Sci. 63, 531 (2013)

    Article  ADS  Google Scholar 

  72. B. Dutta, Y. Mimura, Phys. Lett. B 790, 563 (2019)

    Article  ADS  Google Scholar 

  73. J.P. Bu, Y. Liao, J.Y. Liu, Phys. Lett. B 665, 39 (2008)

    Article  ADS  Google Scholar 

  74. N. Chakrabarty, C.W. Chiang, T. Ohata, K. Tsumura, JHEP 1812, 104 (2018)

    Article  ADS  Google Scholar 

  75. Z. Poh, S. Raby, Phys. Rev. D 96(1), 015032 (2017)

    Article  ADS  Google Scholar 

  76. P.S.B. Dev, R.N. Mohapatra, Y. Zhang, Phys. Rev. Lett. 120(22), 221804 (2018)

    Article  ADS  Google Scholar 

  77. A. M. Baldini et al. [MEG Collaboration] Eur. Phys. J. C 76(8), 434 (2016). arXiv:1605.05081 [hep-ex]

  78. M. Chekkal, A. Ahriche, A.B. Hammou, S. Nasri, Phys. Rev. D 95(9), 095025 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I acknowledge DST Inspire for its financial support. I am thankful to Prof. Anjan Giri for his useful guidance and also acknowledge Nimmala Narendra and Dr. Shivaramakrishna Singirala and Dr. Nirakar Sahoo for their helpful discussions toward this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasmita Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S. Majorana dark matter and neutrino mass with \(S_{3}\) symmetry. Eur. Phys. J. Plus 135, 485 (2020). https://doi.org/10.1140/epjp/s13360-020-00461-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00461-1

Keywords

Navigation