Skip to main content
Log in

Induced spin velocity of the Earth and its influence on the seasonal variation of the Earth’s angular velocity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We examine the induced spin velocity in case of the Earth. Spin velocity is induced from the conversion of a constrained spatial rotation into a spatial displacement. Its effects on Earth as a celestial body are consequences of its properties, and they are examined in detail. The induced spin velocity has influence on the semiannual variation of the length of day. The annual and semiannual variations of the length of day are considered separately. The measured value in case of the semiannual variation of the length of the day is 5.44% more than the predicted, while the measured value in case of the annual variation of the length of the day is 5.36% less than the predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.P. Yefremov, Six-dimensional “rotational relativity”. Acta Phys. Hung. A 11(1–2), 147–153 (2000)

    Google Scholar 

  2. V. Barashenkov, Multitime generalization of Maxwell electrodynamics gravity. Turk. J. Phys. 23, 831–838 (1999)

    Google Scholar 

  3. V. Barashenkov, Quantum field theory with three-dimensional vector time. Phys. Part. Nuclei+ 2004(2), 54–63 (2004)

    Google Scholar 

  4. V. Barashenkov, M.Z. Yuriev, Solutions of multitime Dirac equations. Phys. Part. Nuclei+ 2002(6), 38–43 (2002)

    Google Scholar 

  5. E.A.B. Cole, Particle decay in six-dimensional relativity. J. Phys. A Math. Gen. 13, 109–115 (1980). https://doi.org/10.1088/0305-4470/13/1/012

    Article  ADS  Google Scholar 

  6. A.J.R. Franco, Vectorial Lorentz transformations. Electron. J. Theor. Phys. 9, 35–64 (2006)

    Google Scholar 

  7. H. Kitada, Theory of local times. Il Nuovo Cimento B 109, 281–302 (1994). https://doi.org/10.1007/BF02727290

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Strnad, Experimental evidence against three-dimensional time. Phys. Lett. A 96(5), 231–232 (1983). https://doi.org/10.1016/0375-9601(83)90339-0

    Article  ADS  Google Scholar 

  9. J. Strnad, Once more on multi-dimensional. J. Phys. A Math. Gen. 14, L433–L435 (1981). https://doi.org/10.1088/0305-4470/14/11/003

    Article  ADS  Google Scholar 

  10. K. Trenčevski, Special relativity based on the \(SO(3, C)\) structural group and 3-dimensional time. Math. Balk. 25(1–2), 193–201 (2011)

    MathSciNet  Google Scholar 

  11. K. Trenčevski, Representation of the Lorentz transformations in 6-dimensional space-time. Kragujev. J. Math. 35(2), 327–340 (2011)

    MathSciNet  Google Scholar 

  12. K. Trenčevski, Duality in the special relativity based on the isomorphic structural groups \(SO(3,{\mathbb{C}})\) and \(O_+^{\uparrow }(1,3)\). Tensor 72(1), 32–46 (2010)

    MathSciNet  Google Scholar 

  13. K. Trenčevski, On the geometry of the space-time and motion of the spinning bodies. Cent. Eur. J. Phys. 11(3), 296–316 (2013). https://doi.org/10.2478/s11534-012-0167-z

    Article  Google Scholar 

  14. K. Trenčevski, On the group of isometries of the space, in BSG Proceedings 21, Proceedings of the International Conference “Differential Geometry—Dynamical Systems” DGDS-2013, 10–13 October, Bucharest-Romania, pp. 193–200 (2013)

  15. K. Trenčevski, E. Celakoska, Complex equations of motion for a body under gravitational influence by using nine-parameter space-time bundle with structure group \(SO(3,{{\mathbb{C}}})\). Ann. Phys. N. Y. 395, 15–25 (2018). https://doi.org/10.1016/j.aop.2018.05.005

    Article  ADS  Google Scholar 

  16. K. Trenčevski, Application of the geometry of curves in Euclidean space. Filomat 33(4), 1029–1036 (2019). https://doi.org/10.2298/FIL1904029T

    Article  MathSciNet  Google Scholar 

  17. B. Petkanchin, Differential Geometry (Nauka i izkustvo, Sofia, 1964). (in Bulgarian)

    Google Scholar 

  18. R.D. Rosen, The axial momentum balance of Earth and its fluid envelope. Surv. Geophys. 14(1), 129 (1993)

    Article  Google Scholar 

  19. A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25(4), 297–356 (1981)

    Article  ADS  Google Scholar 

  20. G. Woan, The Cambridge Handbook of Physics Formulas (Cambridge University Press, Cambridge, 2003), p. 176

    Google Scholar 

  21. K. Trenčevski, E. Celakoska, Application of the Thomas precession to the deformations of a rotating disc. Ukr. Math. Bull. 6(4), 429–435 (2009)

    MathSciNet  Google Scholar 

  22. K. Trenčevski, V. Balan, Shrinking of rotational configurations and associated inertial forces. J. Calcuta Math. Soc. 1(3&4), 165–280 (2005)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilija Celakoska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trenčevski, K., Celakoska, E. Induced spin velocity of the Earth and its influence on the seasonal variation of the Earth’s angular velocity. Eur. Phys. J. Plus 135, 450 (2020). https://doi.org/10.1140/epjp/s13360-020-00455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00455-z

Navigation