Skip to main content
Log in

Exploring the Sharma–Mittal HDE models with different diagnostic tools

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have examined the Sharma–Mittal holographic dark energy model (SMHDE) in the framework of an isotropic and spatially homogeneous flat Friedmann–Robertson–Walker Universe by considering different values of parameter \(\delta \) and R, where the infrared cut-off is taken care by the Hubble horizon. We examined the SMHDE model through the analysis of statefinder hierarchy and the growth rate of perturbation. The evolutionary trajectories of the statefinder hierarchy \(S_3^1\), \(S_3^2\)\(S_4^1\), \(S_4^2\) versus redshift z, show satisfactory behaviour throughout the Universe evaluation. One promising tool for investigating the dark energy models is the CND \(\{ S_3^1 - \epsilon \}\) and \(\{ S_4^1 - \epsilon \}\), where the evolutionary trajectories of the \(S_3^1 - \epsilon \) and \(S_4^1 - \epsilon \) pair present different properties and the departure from \(\Lambda \hbox {CDM}\) could be well evaluated. Additionally, we investigated the dynamical analysis of the model by \(\omega _{D}-\omega '_{D}\) pair analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.G. Riess et al., [Supernova Search Team], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

  2. S. Perlmutter et al., [Supernova Cosmology Project Collaboration], Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221. [arxiv:astro-ph/9812133]

  3. N. Aghanim, et al., Planck 2018 results. VI. Cosmological parameters. Preprint (2018). arXiv:1807.06209 [astro-ph.CO]

  4. M. Colless et al., [2DFGRS Collaboration], The 2dF galaxy redshift survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039 (2001). https://doi.org/10.1046/j.1365-8711.2001.04902.x

  5. M. Tegmark et al., [SDSS Collaboration], Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501

  6. D.N. Spergel et al., [WMAP Collaboration], First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003). https://doi.org/10.1086/377226

  7. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X. [hep-th/0603057]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

    Article  ADS  MATH  Google Scholar 

  9. W. Yang, S. Pan, E. Di Valentino, R.C. Nunes, S. Vagnozzi, D.F. Mota, Tale of stable interacting dark energy, observational signatures, and the \(H_0\) tension. JCAP 1809, 019 (2018). https://doi.org/10.1088/1475-7516/2018/09/019. [arXiv:1805.08252 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  10. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  11. V. Sahni, A. Starobinsky, The case for a positive cosmological \(\Lambda \)-term. Int. J. Mod. Phys. D 9(04), 373–443 (2000)

    Article  ADS  Google Scholar 

  12. P.J.E. Peebles, B. Ratra, The Cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. T. Padmanabhan, Dark energy and gravity. Gen. Rel. Grav. 40, 529 (2008). https://doi.org/10.1007/s10714-007-0555-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S.M. Carroll, The Cosmological constant. Living Rev. Rel. 4, 1 (2001). https://doi.org/10.12942/lrr-2001-1

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P.J.E. Peebles, B. Ratra, Cosmology with a time-variable cosmological’constant. Int. J. Mod. Phys. A 325, L17–L20 (1988)

    Google Scholar 

  17. M.S. Turner, Making sense of the new cosmology. Int. J. Mod. Phys. A 17, 180 (2002)

    Article  ADS  Google Scholar 

  18. R.R. Caldwell, M. Kamionkowski et al., Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003). https://doi.org/10.1103/PhysRevLett.91.071301

    Article  ADS  Google Scholar 

  19. T. Chiba, Tracking K-essence. Phys. Rev. D 66, 063514 (2002). https://doi.org/10.1103/PhysRevD.66.063514

    Article  ADS  Google Scholar 

  20. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essentials of \(k\) essence. Phys. Rev. D 63, 103510 (2001). https://doi.org/10.1103/PhysRevD.63.103510. [arxiv:astro-ph/0006373]

    Article  ADS  Google Scholar 

  21. M. Malquarti, E.J. Copeland, A.R. Liddle, M. Trodden, A New view of \(k\)-essence. Phys. Rev. D 67, 123503 (2003). https://doi.org/10.1103/PhysRevD.67.123503. [arxiv:astro-ph/0302279]

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Sen, Universality of the tachyon potential. J. High Energy Phys. 1999(12), 027 (2000)

    Article  MathSciNet  Google Scholar 

  23. A.Y. Kamenshchik, U. Moschella et al., An Alternative to quintessence. Phys. Lett. B 511, 265 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8

    Article  ADS  MATH  Google Scholar 

  24. C.H. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. D 124(3), 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. De Felice, S. Tsujikawa, \(f(R)\) theories. Living Rev. Rel. 13, 3 (2010). https://doi.org/10.12942/lrr-2010-3

    Article  MATH  Google Scholar 

  26. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from \(f(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011). https://doi.org/10.1016/j.physrep.2011.04.001

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Maity, P. Rudra, Gravitational Baryogenesis in \(\text{ Ho }\check{r}\text{ ava }\)-Lifshitz gravity. Mod. Phys. Lett. A 34(25), 1950203 (2019)

    Article  ADS  Google Scholar 

  29. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, \(f(R, T)\) gravity. Phys. Rev. D 84, 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

    Article  ADS  Google Scholar 

  30. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377 (1995). https://doi.org/10.1063/1.531249

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Horava, D. Minic, Probable values of the cosmological constant in a holographic theory. Phys. Rev. Lett. 85, 1610 (2000). https://doi.org/10.1103/PhysRevLett.85.1610

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S.D. Thomas, Holography stabilizes the vacuum energy. Phys. Rev. Lett. 89, 081301 (2002). https://doi.org/10.1103/PhysRevLett.89.081301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S.D.H. Hsu, Entropy bounds and dark energy. Phys. Lett. B 594, 13 (2004). https://doi.org/10.1016/j.physletb.2004.05.020

    Article  ADS  Google Scholar 

  34. M. Li, A Model of holographic dark energy. Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

    Article  ADS  Google Scholar 

  35. S. Wang, Y. Wang, M. Li, Holographic dark energy. Phys. Rep. 696, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. Nojiri, S.D. Odintsov, Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Rel. Grav. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A. Sheykhi, Holographic scalar fields models of dark energy. Phys. Rev. D 84, 107302 (2011). https://doi.org/10.1103/PhysRevD.84.107302

    Article  ADS  Google Scholar 

  38. S. Srivastava, U.K. Sharma, A. Pradhan, New holographic dark energy in bianchi- \(III\) Universe with \(k\)-essence. New Astron. 68, 57 (2019)

    Article  ADS  Google Scholar 

  39. Y.Z. Ma, Y. Gong, X. Chen, Features of holographic dark energy under the combined cosmological constraints. Eur. Phys. J. C 60, 303 (2009). https://doi.org/10.1140/epjc/s10052-009-0876-7

    Article  ADS  Google Scholar 

  40. R.G. Cai, A dark energy model characterized by the age of the universe. Phys. Lett. B 657, 228 (2007). https://doi.org/10.1016/j.physletb.2007.09.061

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. H. Wei, R.G. Cai, A new model of agegraphic dark energy. Phys. Lett. B 660, 113 (2008). https://doi.org/10.1016/j.physletb.2007.12.030

    Article  ADS  Google Scholar 

  42. C. Gao, F. Wu et al., A holographic dark energy model from ricci scalar curvature. Phys. Rev. D 79, 043511 (2009). https://doi.org/10.1103/PhysRevD.79.043511

    Article  ADS  Google Scholar 

  43. C. Tsallis, L.J.L. Cirto, Black hole thermodynamical entropy. Eur. Phys. J. C 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

    Article  ADS  Google Scholar 

  44. C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479 (1988). https://doi.org/10.1007/BF01016429

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Rényi, in Proceedings of the 4th Berkely Symposium on Mathematics, Statistics and Probability (University California Press, Berkeley, CA, 1961), pp. 547–561

  46. B.D. Sharma, D.P. Mittal, New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 10, 28–40 (1975)

    MathSciNet  Google Scholar 

  47. B.D. Sharma, D.P. Mittal, J. Comb. Inf. Syst. Sci. 2, 122 (1977)

    Google Scholar 

  48. H. Moradpour, S. Moosavi, I. Lobo, J. Morais Graca, A. Jawad, I. Salako, Thermodynamic approach to holographic dark energy and the \(\text{ R }\acute{e}\text{ nyi }\) entropy. Eur. Phys. J. C 78(10), 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8

    Article  ADS  Google Scholar 

  49. M. Tavayef, A. Sheykhi, K. Bamba, H. Moradpour, Tsallis holographic dark energy. Phys. Lett. B 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

    Article  ADS  Google Scholar 

  50. M.Abdollahi Zadeh, A. Sheykhi, H. Moradpour, Tsallis agegraphic dark energy model. Mod. Phys. Lett. A 34(11), 1950086 (2019). https://doi.org/10.1142/S021773231950086X

    Article  ADS  MATH  Google Scholar 

  51. A.Sayahian Jahromi, S.A. Moosavi, H. Moradpour, J.P.Morais Graaa, I.P. Lobo, I.G. Salako, A. Jawad, Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 780, 21 (2018). https://doi.org/10.1016/j.physletb.2018.02.052

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Nojiri, S .D. Odintsov, E .N. Saridakis, Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 79, 242 (2019)

    Article  ADS  Google Scholar 

  53. Q. Huang, H. Huang, J. Chen, L. Zhang, F. Tu, Stability analysis of a Tsallis holographic dark energy model. Class. Quant. Grav. 36(17), 175001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Ghaffari, H. Moradpour, I.P. Lobo, J.P. Morais Graaa, V.B. Bezerra, Tsallis holographic dark energy in the Brans–Dicke cosmology. Eur. Phys. J. C 78(9), 706 (2018). https://doi.org/10.1140/epjc/s10052-018-6198-x

    Article  ADS  Google Scholar 

  55. E.N. Saridakis, K. Bamba, R. Myrzakulov, F.K. Anagnostopoulos, Holographic dark energy through Tsallis entropy. JCAP 1812, 012 (2018). https://doi.org/10.1088/1475-7516/2018/12/012

    Article  ADS  Google Scholar 

  56. V.C. Dubey, S. Srivastava, U.K. Sharma, A. Pradhan, Tsallis holographic dark energy in Bianchi-I Universe using hybrid expansion law with \(k\)-essence. Pramana 93(5), 78 (2019). https://doi.org/10.1007/s12043-019-1843-y

    Article  ADS  Google Scholar 

  57. E. Sadri, Observational constraints on interacting Tsallis holographic dark energy model. Eur. Phys. J. C 79(9), 762 (2019). https://doi.org/10.1140/epjc/s10052-019-7263-9

    Article  ADS  Google Scholar 

  58. E.M. Barboza, RdC Nunes Jr., E.M.C. Abreu, J. Ananias Neto, Dark energy models through nonextensive Tsallis statistics. Physica A 436, 301 (2015). https://doi.org/10.1016/j.physa.2015.05.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. T. Golanbari, K. Saaidi, P. Karimi, \(\text{ R }\acute{e}\text{ nyi }\) entropy and the holographic dark energy in flat space time. [arXiv:2002.04097 [astro-ph.CO]]

  60. U. K. Sharma, V. C. Dubey, Interacting \(\text{ R }\acute{e}\text{ nyi }\) holographic dark energy with parametrization on the interaction term. [arXiv:2001.02368 [gr-qc]]

  61. S. Ghaffari, A.H. Ziaie, V.B. Bezerra, H. Moradpour, Inflation in the \(\text{ R }\acute{e}\text{ nyi }\) cosmology. Mod. Phys. Lett. A 35(01), 1950341 (2019)

    Article  ADS  Google Scholar 

  62. S. Ghaffari, H. Moradpour, V.B. Bezerra, J. Morais Graaa, I. Lobo, Tsallis holographic dark energy in the brane cosmology. Phys. Dark Univ. 23, 100246 (2019)

    Article  Google Scholar 

  63. V.C. Dubey et al., Tsallis holographic dark energy Models in axially symmetric space time. Int. J. Geom. Methods Mod. Phys. 17(1), 2050011 (2020)

    Article  MathSciNet  Google Scholar 

  64. Y. Aditya, S. Mandal, P.K. Sahoo, D.R.K. Reddy, Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans–Dicke theory. Eur. Phys. J. C 7912, 1020 (2019)

    Article  ADS  Google Scholar 

  65. R. D’Agostino, Holographic dark energy from nonadditive entropy: cosmological perturbations and observational constraints. Phys. Rev. D 99(10), 103524 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  66. M. Arabsalmani, V. Sahni, The Statefinder hierarchy: an extended null diagnostic for concordance cosmology. Phys. Rev. D 83, 043501 (2011). https://doi.org/10.1103/PhysRevD.83.043501

    Article  ADS  Google Scholar 

  67. J.F. Zhang, J.L. Cui et al., Diagnosing holographic dark energy models with statefinder hierarchy. Eur. Phys. J. C 74(10), 3100 (2014). https://doi.org/10.1140/epjc/s10052-014-3100-3

    Article  Google Scholar 

  68. V. Acquaviva, A. Hajian et al., Next generation redshift surveys and the origin of cosmic acceleration. Phys. Rev. D 78, 043514 (2008). https://doi.org/10.1103/PhysRevD.78.043514

    Article  ADS  Google Scholar 

  69. V. Acquaviva, E. Gawiser, How to falsify the GR+LambdaCDM Model with galaxy redshift surveys. Phys. Rev. D 82, 082001 (2010). https://doi.org/10.1103/PhysRevD.82.082001

    Article  ADS  Google Scholar 

  70. R. Myrzakulov, M. Shahalam, Statefinder hierarchy of bimetric and galileon models for concordance cosmology. JCAP 1310, 047 (2013). https://doi.org/10.1088/1475-7516/2013/10/047

    Article  ADS  Google Scholar 

  71. J. Li, R. Yang et al., Discriminating dark energy models by using the statefinder hierarchy and the growth rate of matter perturbations. JCAP 1412, 043 (2014). https://doi.org/10.1088/1475-7516/2014/12/043

    Article  ADS  Google Scholar 

  72. Y. Hu, M. Li et al., Impacts of different SNLS3 light-curve fitters on cosmological consequences of interacting dark energy models. Astron. Astrophys. 592, A101 (2016). https://doi.org/10.1051/0004-6361/201526946

    Article  ADS  Google Scholar 

  73. A. Mukherjee, N. Paul, H.K. Jassal, Constraining the dark energy statefinder hierarchy in a kinematic approach. JCAP 1901, 005 (2019). https://doi.org/10.1088/1475-7516/2019/01/005

    Article  ADS  Google Scholar 

  74. J. Cui, L. Yin, L. Wang, Y. Li, X. Zhang, A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure. JCAP 09, 024 (2015)

    Article  ADS  Google Scholar 

  75. L. Zhou, S. Wang, Diagnosing \(\Lambda \text{ HDE }\) model with statefinder hierarchy and fractional growth parameter. Sci. China Phys. Mech. Astron. 59(7), 670411 (2016)

    Article  Google Scholar 

  76. A. Majumdar, S. Chattopadhyay, A study of modified holographic Ricci dark energy in the framework of \(f\text{(T) }\) modified gravity and its statefinder hierarchy. Can. J. Phys. 97(5), 477 (2019)

    Article  ADS  Google Scholar 

  77. Z. Zhao, S. Wang, Diagnosing holographic type dark energy models with the Statefinder hierarchy, composite null diagnostic and \(w-w\) pair. Sci. China Phys. Mech. Astron. 61(3), 039811 (2018)

    Article  ADS  Google Scholar 

  78. F. Yu, J.L. Cui, J.F. Zhang, X. Zhang, Statefinder hierarchy exploration of the extended Ricci dark energy. Eur. Phys. J. C 75(6), 274 (2015)

    Article  ADS  Google Scholar 

  79. V. Srivastava, U.K. Sharma, Statefinder hierarchy for Tsallis holographic dark energy. New Astron. 78, 101380 (2020). https://doi.org/10.1016/j.newast.2020.101380

    Article  Google Scholar 

  80. R.R. Caldwell, E.V. Linder, The Limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

    Article  ADS  Google Scholar 

  81. V. C. Dubey, A. K. Mishra, U. K. Sharma. Diagnosing the \(\text{ R }\acute{e}\text{ nyi }\) Holographic Dark Energy model in a flat Universe. [arXiv:2003.07883 [gr-qc]]

  82. A. Iqbal, A. Jawad, Tsallis, \(\text{ R }\acute{e}\text{ nyi }\) and Sharma-Mittal holographic dark energy models in DGP brane-world. Phys. Dark Univ. 26, 100349 (2019)

    Article  Google Scholar 

  83. M. Younas, A. Jawad, S. Qummer, H. Moradpour, S. Rani, Cosmological implications of the generalized entropy based holographic dark energy models in dynamical Chern–Simons modified gravity. Adv. High Energy Phys. 2019, 1287932 (2019)

    Article  Google Scholar 

  84. S. Rani, A. Jawad, K. Bamba, I.U. Malik, Cosmological consequences of new dark energy models in Einstein–Aether gravity. Symmetry 11(4), 509 (2019)

    Article  Google Scholar 

  85. A. Jawad, K. Bamba, M. Younas, S. Qummer, S. Rani, Tsallis, \(\text{ R }\acute{e}\text{ nyi }\) and Sharma-Mittal holographic dark energy models in loop quantum cosmology. Symmetry 10(11), 635 (2018)

    Article  Google Scholar 

  86. A. Jawad, S. Rani, M.H. Hussain, Cosmological implications and thermodynamics of some reconstructed modified gravity models. Phys. Dark Univ. 27, 100409 (2020)

    Article  Google Scholar 

  87. C. Tsallis, The nonadditive entropy \(S_{q}\) and its applications in physics and elsewhere: some remarks. Entropy 13, 1765 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  88. R. C. Nunes, E. M. Barboza Jr., E. M. C. Abreu, J. N. Neto, Probing the cosmological viability of non-gaussian statistics, JCAP08 (2016) 051; [arXiv:1509.05059 [gr-qc]]

  89. M. Masi, A step beyond Tsallis and \(\text{ R }\acute{e}\text{ nyi }\) entropies. Phys. Lett. A 338, 217 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  90. E. M. C. Abreu, J. A. Neto, E. M. Barboza, A. C. R. Mendes, B. B. Soares, On the equipartition theorem and black holes nongaussian entropies. arXiv:2002.02435 [gr-qc]

  91. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. V. Sahni, A. Shafieloo et al., Two new diagnostics of dark energy. Phys. Rev. D 78, 103502 (2008). https://doi.org/10.1103/PhysRevD.78.103502

    Article  ADS  Google Scholar 

  93. L.M. Wang, P.J. Steinhardt, Cluster abundance constraints on quintessence models. Astrophys. J. 508, 483 (1998). https://doi.org/10.1086/306436

    Article  ADS  Google Scholar 

  94. E.V. Linder, Cosmic growth history and expansion history. Phys. Rev. D 72, 043529 (2005)

    Article  ADS  Google Scholar 

  95. M. Malekjani, A. Khodam-Mohammadi, Agegraphic dark energy model in non-flat universe: statefinder diagnostic and \(w-w^{\prime }\) analysis. Int. J. Mod. Phys. D 19, 1857 (2010)

    Article  ADS  Google Scholar 

  96. A. Khodam-Mohammadi, M. Malekjani, Cosmic Behavior, Statefinder Diagnostic and \(w-w^{\prime }\) Analysis for Interacting NADE model in Non-flat Universe. Astrophys. Space Sci. 331, 265 (2011)

    Article  ADS  Google Scholar 

  97. U.K. Sharma, A. Pradhan, Diagnosing Tsallis holographic dark energy models with statefinder and \(\omega \) - \(\omega ^{^{\prime }}\) pair. Mod. Phys. Lett. A 34(13), 1950101 (2019)

    Article  ADS  Google Scholar 

  98. G. Varshney, U.K. Sharma, A. Pradhan, Statefinder diagnosis for interacting Tsallis holographic dark energy models with \(\omega - \omega ^{^{\prime }}\) pair. New Astron. 70, 36 (2019)

    Article  ADS  Google Scholar 

  99. N. Zhang, Y.B. Wu, J.N. Chi, Z. Yu, D.F. Xu, Diagnosing Tsallis Holographic Dark Energy models with interactions. Mod. Phys. Lett. A 35(08), 2050044 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  100. V.C. Dubey, U.K. Sharma, A. Beesham, Tsallis holographic model of dark energy: cosmic behavior, statefinder analysis and \(\omega _D-\omega _D^{\prime }\) pair in the nonflat universe. Int. J. Mod. Phys. D 28(15), 1950164 (2019)

    Article  ADS  Google Scholar 

  101. S. Srivastava, V.C. Dubey, U.K. Sharma, Statefinder diagnosis for Tsallis agegraphic dark energy model with \(\omega _{D}-\omega _{D}^{^{\prime }}\) pair. Int. J. Mod. Phys. A 35, 2050027 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful for valuable suggestions given by Dr. Prateek Pandey, GLA University, Mathura, India, in this research work. The authors are also thankful to the anonymous referee for his/her constructive comments which helped to improve the quality of paper in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U.K., Dubey, V.C. Exploring the Sharma–Mittal HDE models with different diagnostic tools. Eur. Phys. J. Plus 135, 391 (2020). https://doi.org/10.1140/epjp/s13360-020-00411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00411-x

Navigation