Skip to main content
Log in

Geometrically constrained kinklike configurations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study kinklike structures, which are localized solutions that appear in models described by real scalar fields. The model to be considered is characterized by two real scalar fields and includes a function of one of the two fields that modifies the kinematics associated with the other field. The investigation brings to light a first-order framework that minimizes the energy of the solutions by introducing an auxiliary function that directly contributes to describe the system. We explore an interesting route, in which one field acts independently, entrapping the other field, inducing important modifications in the profile of the localized structure. The procedure may make the solution to spring up as a kinklike configuration with internal structure, engendering the important feature that also appears directly connected with issues of current interest at the nanometric scale, in particular in the electronic transport in molecules in the presence of vibrational degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  2. T. Vachaspati, Kinks and Domain Walls (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  3. E.J. Weinberg, Classical Solutions in Quantum Field Theory (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  4. D. Finkelstein, J. Math. Phys. 7, 1218 (1966)

    Article  ADS  Google Scholar 

  5. D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. D 66, 101701(R) (2002)

    Article  ADS  Google Scholar 

  6. D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91, 241601 (2003)

    Article  ADS  Google Scholar 

  7. S. Dutta, D.A. Steer, T. Vachaspati, Phys. Rev. Lett. 101, 121601 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Alonso-Izquierdo, M.A.G. Leon, J.M. Guilarte, Phys. Rev. Lett. 101, 131602 (2008)

    Article  ADS  Google Scholar 

  9. D.A. Takahashi, M. Nitta, Phys. Rev. Lett. 110, 131601 (2013)

    Article  ADS  Google Scholar 

  10. D. Matsunami, L. Pogosian, A. Saurabh, T. Vachaspati, Phys. Rev. Lett. 122, 201301 (2019)

    Article  ADS  Google Scholar 

  11. P.-O. Jubert, R. Allenspach, A. Bischof, Phys. Rev. B 69, 220410(R) (2004)

    Article  ADS  Google Scholar 

  12. A. Vanhaverbeke, A. Bischof, R. Allenspach, Phys. Rev. Lett. 101, 107202 (2008)

    Article  ADS  Google Scholar 

  13. K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010)

    Article  ADS  Google Scholar 

  14. F.J. Buijnsters, A. Fasolino, M.I. Katsnelson, Phys. Rev. Lett. 113, 217202 (2014)

    Article  ADS  Google Scholar 

  15. R.D. Yamaletdinov, V.A. Slipko, Y.V. Pershin, Phys. Rev. B 96, 094306 (2017)

    Article  ADS  Google Scholar 

  16. A. Mitra, I. Aleiner, A.J. Millis, Phys. Rev. B 69, 245302 (2004)

    Article  ADS  Google Scholar 

  17. J.M. Thijssen, H.S.J. Van der Zant, Phys. Status Solidi B 245, 1455 (2008)

    Article  ADS  Google Scholar 

  18. M. Thoss, F. Evers, J. Chem. Phys. 148, 030901 (2018)

    Article  ADS  Google Scholar 

  19. P. Gehring, J.M. Thijssen, H.S.J. van der Zant, Nat. Rev. Phys. 1, 381 (2019)

    Article  Google Scholar 

  20. G. Erdemci-Tandogan, H. Orland, R. Zandi, Phys. Rev. Lett. 119, 188102 (2017)

    Article  ADS  Google Scholar 

  21. R. Hobart, Proc. Phys. Soc. Lond. 82, 201 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  22. G.H. Derrick, J. Math. Phys. 5, 1252 (1964)

    Article  ADS  Google Scholar 

  23. Y. Zhou, M. Ezawa, Nat. Commun. 5, 4652 (2014)

    Article  ADS  Google Scholar 

  24. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Science 349, 283 (2015)

    Article  ADS  Google Scholar 

  25. C. Schinabeck, A. Erpenbeck, R. Hartle, M. Thoss, Phys. Rev. B 94, 201407(R) (2016)

    Article  ADS  Google Scholar 

  26. E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976)

    Google Scholar 

  27. D. Bazeia, L. Losano, R. Menezes, J.C.R.E. Oliveira, Eur. Phys. J. C 51, 953 (2007)

    Article  ADS  Google Scholar 

  28. D. Bazeia, L. Losano, R. Menezes, Phys. Lett. B 668, 246 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants 306614/2014-6, 404913/2018-0, 130923/2018-4, and 155551/2018-3) and by Paraiba State Research Foundation (FAPESQ-PB Grant 0015/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bazeia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazeia, D., Liao, M.A. & Marques, M.A. Geometrically constrained kinklike configurations. Eur. Phys. J. Plus 135, 383 (2020). https://doi.org/10.1140/epjp/s13360-020-00395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00395-8

Navigation