Skip to main content
Log in

Big bang nucleosynthesis and entropy evolution in f(RT) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present article is devoted to constraining the model parameter \(\chi \) for the \(f(R,T)= R + \chi T\) gravity model by employing the constraints coming from big bang nucleosynthesis. We solve the field equations and constrain \(\chi \) in the range \(-0.14 \kappa ^{2} \le \chi \le 0.84 \kappa ^{2}\) (where \(\kappa ^{2} = \frac{8 \pi G}{c^{4}}\)) from the primordial abundances of light elements such as helium-4, deuterium and lithium-7. We found the abundances of helium-4 and deuterium agree with theoretical predictions; however, the lithium problem persists for the f(RT) gravity model. We also investigate the evolution of entropy for the constrained parameter space of \(\chi \) for the radiation and dust universe. We report that entropy is constant when \(\chi = 0\) for the radiation-dominated universe, whereas for the dust universe, entropy increases with time. We finally use the constraints to show that \(\chi \) has a negligible influence on the cold dark matter annihilation cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. For a review, see e.g., A. Linde, Lect.Notes Phys. 738, 1–54 (2008)

  2. S. Boran, E.O. Kahya, Adv. High Energy Phys. 2014, 282675 (2014). arXiv:1310.6145

    Google Scholar 

  3. P.J.E. Pebbles, B. Ratra, Rev. Mod. Phys. 75, 559606 (2003)

    Google Scholar 

  4. S. Perlmutter et al., Astrophys. J. 517, 565–586 (1999)

    ADS  Google Scholar 

  5. T. Harko et al., Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  6. S. Capozziello, M.D. Laurentis, Phys. Rept. 509, 167 (2011)

    ADS  Google Scholar 

  7. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  Google Scholar 

  8. R. Zaregonbadi et al., Phys. Rev. D 94, 084052 (2016)

    ADS  Google Scholar 

  9. G. Sun, Y.-C. Huang, Int. J. Mod. Phys. D 25, 1650038 (2016)

    ADS  Google Scholar 

  10. F. Rocha et al. arXiv:1911.08894 (2019)

  11. S.I. dos Santos, G.A. Carvalho, P.H.R.S. Moraes, C.H. Lenzi, M. Malheiro, Eur. Phys. J. Plus 134, 398 (2019)

    Google Scholar 

  12. P.H.R.S. Moraes, J.D.V. Arbañil, M. Malheiro, J. Cosm. Astrop. Phys. 06, 005 (2016)

    ADS  Google Scholar 

  13. P.H.R.S. Moraes, P.K. Sahoo, Eur. Phys. J. C 79, 677 (2019)

    ADS  Google Scholar 

  14. E. Elizalde, M. Khurshudyan, Phys. Rev. D 99, 024051 (2019)

    ADS  MathSciNet  Google Scholar 

  15. P.H.R.S. Moraes, W. de Paula, R.A.C. Correa, Int. J. Mod. Phys. D 28, 1950098 (2019)

    ADS  Google Scholar 

  16. E. Elizalde, M. Khurshudyan, Phys. Rev. D 98, 123525 (2018)

    ADS  MathSciNet  Google Scholar 

  17. P.H.R.S. Moraes, P.K. Sahoo, Phys. Rev. D 97, 024007 (2018)

    ADS  MathSciNet  Google Scholar 

  18. P.K. Sahoo, P.H.R.S. Moraes, P. Sahoo, Eur. Phys. J. C 78, 46 (2018)

    ADS  Google Scholar 

  19. P.K. Sahoo, P.H.R.S. Moraes, P. Sahoo, G. Ribeiro, Int. J. Mod. Phys. D 27, 1950004 (2018)

    ADS  Google Scholar 

  20. P.H.R.S. Moraes, P.K. Sahoo, Phys. Rev. D 96, 044038 (2017)

    ADS  MathSciNet  Google Scholar 

  21. P.H.R.S. Moraes, R.A.C. Correa, R.V. Lobato, J. Cosm. Astrop. Phys. 07, 029 (2017)

    ADS  Google Scholar 

  22. T. Azizi, Int. J. Theor. Phys. 52, 3486 (2013)

    Google Scholar 

  23. M. Sharif, A. Siddiqa, Gen. Rel. Grav. 51, 74 (2019)

    ADS  Google Scholar 

  24. M.E.S. Alves, P.H.R.S. Moraes, J.C.N. de Araujo, M. Malheiro, Phys. Rev. D 94, 024032 (2016)

    ADS  MathSciNet  Google Scholar 

  25. P.K. Sahoo, S. Bhattacharjee, Int. J. Theor. Phys, (2020) https://doi.org/10.1007/s10773-020-04414-3. arXiv: 1907.13460

  26. P. Sahoo et al., Mod. Phys. Lett. A (2020). https://doi.org/10.1142/S0217732320500959. arXiv: 1907.08682

  27. S. Bhattacharjee, P.K. Sahoo, Eur. Phys. J. Plus 135, 86 (2020). [arXiv:2001.06569]

    Google Scholar 

  28. J.U. Kang, G. Panotopoulos, Phys. Lett. B 677, 6 (2009)

    ADS  Google Scholar 

  29. R.P.L. Azevedo, P.P. Avelion, Phys. Rev. D 98, 064045 (2018)

    ADS  MathSciNet  Google Scholar 

  30. M. Kusakabe et al., Phys. Rev. D 91, 104023 (2015)

    ADS  Google Scholar 

  31. S. Capozzielo, G. Lambiase, E.N. Saridakis, Eur. Phys. J. C 77, 576 (2017)

    ADS  Google Scholar 

  32. A. Coc, K.A. Olive, Phys. Rev. D 73, 083525 (2006)

    ADS  Google Scholar 

  33. R. Nakamura, M. Hashimoto, S. Gamow, K. Arai, A & A 448, 23 (2006)

    ADS  Google Scholar 

  34. G. Lambiase, JCAP 10, 028 (2012)

    ADS  Google Scholar 

  35. J. Larena, J.M. Alami, A. Serna, Astrophys. J. 658, 1 (2007)

    ADS  Google Scholar 

  36. T.R. Makki, M.F.E. Eid, Mod. Phys. Lett. A 34(24), 1950194 (2019)

    ADS  Google Scholar 

  37. G. Steigman, Adv. High Energy Phys. 2012, 268321 (2012)

    Google Scholar 

  38. V. Simha, G. Steigman, JCAP 06, 016 (2008)

    ADS  Google Scholar 

  39. WMAP Collaboration (E. Komatsu et al.), Astrophys. J. Suppl. 192, 18 (2011)

  40. J.P. Kneller, G. Steigman, New J. Phys. 6, 117 (2004)

    ADS  Google Scholar 

  41. G. Steigman, Annu. Rev. Nucl. Part. Sci. 57, 463 (2007)

    ADS  Google Scholar 

  42. B.D. Fields et al., JCAP 03, 010 (2020)

    ADS  Google Scholar 

  43. B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47–68 (2011)

    ADS  Google Scholar 

  44. T. Harko, Phys. Rev. D 90, 044067 (2014)

    ADS  Google Scholar 

  45. I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Proc. Natl. Acad. Sci. USA 85, 7428 (1988)

    ADS  Google Scholar 

  46. M.P.L.P. Ramos, J. Paramos, Phys. Rev. D 96, 104024 (2017)

    ADS  Google Scholar 

  47. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley Publishing Company, Redwood City, 1989)

    Google Scholar 

  48. D.N. Spergel et al. WMAP Collaboration, Astrophys. J. Suppl. 170, 377 (2007)

  49. S. Capozziello, M. Capriolo, M. Transirico, Int. J. Geom. Meth. Mod. Phys 15, 1850164 (2018)

    Google Scholar 

  50. M. De Laurentis, S. Capozziello, Astropart. Phys. 35, 257 (2011)

    ADS  Google Scholar 

  51. K. Bamba, S. Capozziello, M. De Laurentis, S. Nojiri, D. Sez-Gmez, Phys. Lett. B 727, 194 (2013)

    ADS  Google Scholar 

  52. H. Abedi, S. Capozziello, Eur. Phys. J. C 78, 474 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

SB thanks Biswajit Pandey for constant support and motivation. SB also thanks Suman Sarkar and Biswajit Das for helpful discussions. PKS acknowledges CSIR, New Delhi, India, for financial support to carry out the research project [No.03(1454)/19/EMR-II Dt.02/08/2019]. We are very much grateful to the honorable referee and the editor for the illuminating suggestions that have significantly improved our work in terms of research quality and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S., Sahoo, P.K. Big bang nucleosynthesis and entropy evolution in f(RT) gravity. Eur. Phys. J. Plus 135, 350 (2020). https://doi.org/10.1140/epjp/s13360-020-00361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00361-4

Navigation