Skip to main content
Log in

Flavor signatures of complex anomalous tcZ couplings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study the effects of anomalous tcZ couplings. Such couplings would potentially affect several neutral current decays of K and B mesons via Z-penguin diagrams. Using constraints from relevant observables in K and B sectors, we find that the 2\(\sigma \) upper bound on the branching ratio of \(\mathcal{B}(t \rightarrow c Z)\) is \(1.47 \times 10^{-5}\) for real coupling and \(1.91 \times 10^{-4}\) for complex coupling. The current experimental upper bound from ATLAS and CMS collaborations on the branching ratio of \(t \rightarrow c Z\) is \(2.4 \times 10^{-4}\) and \(4.9\times 10^{-4}\) at \(95\%\) C.L., respectively. Hence the possibility of observation of \(t \rightarrow c Z\) decay at the level of \(10^{-4}\) would imply the anomalous couplings to be complex. Such complex couplings should also show up its presence in other related decays. We find that an order of magnitude enhancement is possible in the branching ratio of \(K_L \rightarrow \pi ^0 \nu {\bar{\nu }}\). Further, the complex tcZ coupling can also provide large enhancements in many CP violating angular observables in \(B \rightarrow K^* \mu ^+ \mu ^-\) decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Apart from introducing new anomalies in \(b \rightarrow s\, \mu ^+ \,\mu ^-\) sector, the LHC reinforced the prevailing anomalies in the decays included by \(b \rightarrow c \tau \nu \) transition. A series of experiments performed by BaBar [1, 2], Belle [3,4,5,6] indicated an excess in the values of the ratios \(R_{D^{(*)}} = {\Gamma (B\rightarrow D^{(*)}\,\tau \,{\bar{\nu }})}/{ \Gamma (B\rightarrow D^{(*)}\, e/\mu \, {\bar{\nu }})}\) over their SM predictions. This was corroborated by the LHCb measurements [7, 8]. Refs. [9,10,11,12,13,14] identified new physics operators which can account for \(R_{D^{(*)}}\) measurements.

  2. This can also be attributed to underestimation of hadronic uncertainties within the SM. For example, in [31], it was shown that the experimental data can be accommodated within the SM itself if one assumes sizable non factorizable power corrections.

  3. In Ref. [68], all possible FCNC transitions of top quark was considered. It was shown that there could be a large number of gauge-invariant terms which can lead to different top quark FCNC processes. In this work, we concentrate only on the effective tcZ anomalous couplings and obtain model-independent bounds using constraints from the current flavor data. In the presence of other anomalous top quark FCNC couplings, the allowed tcZ parameter space, in general may be relaxed. Further, in a specific new physics model, there can be additional constraints which may shrink the allowed tcZ parameter space obtained in this work.

References

  1. J.P. Lees et al., BaBar collaboration. Phys. Rev. Lett. 109, 101802 (2012). arXiv:1205.5442 [hep-ex]

  2. J.P. Lees et al., BaBar collaboration. Phys. Rev. D 88, no. 7, 072012 (2013) arXiv:1303.0571 [hep-ex]

  3. M. Huschle et al., Belle collaboration. Phys. Rev. D 92, no. 7, 072014 (2015) arXiv:1507.03233 [hep-ex]

  4. Y. Sato et al., Belle Collaboration. Phys. Rev. D 94 7, 072007 (2016). arXiv:1607.07923 [hep-ex]

  5. S. Hirose et al., Belle collaboration. Phys. Rev. Lett. 11821, 211801 (2017). arXiv:1612.00529 [hep-ex]

  6. S. Hirose et al., Belle collaboration. Phys. Rev. D 971, 012004 (2018). arXiv:1709.00129 [hep-ex]

  7. R. Aaij et al., LHCb collaboration. Phys. Rev. Lett. 11511, 111803 (2015). arXiv:1506.08614 [hep-ex]

  8. R. Aaij et al., LHCb collaboration. arXiv:1708.08856 [hep-ex]

  9. M. Freytsis, Z. Ligeti, J.T. Ruderman, Phys. Rev. D 92(5), 054018 (2015). arXiv:1506.08896 [hep-ph]

    ADS  Google Scholar 

  10. A.K. Alok, D. Kumar, J. Kumar, S. Kumbhakar, S.U. Sankar, JHEP 1809, 152 (2018). arXiv:1710.04127 [hep-ph]

    ADS  Google Scholar 

  11. A .K. Alok, D. Kumar, S. Kumbhakar, S. Uma Sankar, Phys. Lett. B 784, 16 (2018). arXiv:1804.08078 [hep-ph]

    ADS  Google Scholar 

  12. M. Blanke, A. Crivellin, S. de Boer, M. Moscati, U. Nierste, I. Nišandžić, T. Kitahara, Phys. Rev. D 99(7), 075006 (2019). arXiv:1811.09603 [hep-ph]

    ADS  Google Scholar 

  13. A.K. Alok, D.Kumar, S.Kumbhakar, S. Uma Sankar. arXiv:1903.10486 [hep-ph]

  14. C. Murgui, A. Peñuelas, M. Jung, A. Pich, arXiv:1904.09311 [hep-ph]

  15. R. Aaij et al., LHCb Collaboration. Phys. Rev. Lett. 113, 151601 (2014). arXiv:1406.6482 [hep-ex]

  16. G. Hiller, F. Kruger, Phys. Rev. D 69, 074020 (2004). arXiv:hep-ph/0310219

    ADS  Google Scholar 

  17. M. Bordone, G. Isidori, A. Pattori, Eur. Phys. J. C 76(8), 440 (2016). arXiv:1605.07633 [hep-ph]

    ADS  Google Scholar 

  18. C. Bouchard et al., HPQCD collaboration. Phys. Rev. Lett. 111, no. 16, 162002 (2013); Erratum: Phys. Rev. Lett. 112, no. 14, 149902 (2014). arXiv:1306.0434 [hep-ph]

  19. R. Aaij et al., LHCb collaboration. arXiv:1903.09252 [hep-ex]

  20. R. Aaij et al., LHCb collaboration. JHEP 1708, 055 (2017). arXiv:1705.05802 [hep-ex]

  21. S. Jäger, J. Martin Camalich, Phys. Rev. D 93(1), 014028 (2016). arXiv:1412.3183 [hep-ph]

    ADS  Google Scholar 

  22. A. Bharucha, D.M. Straub, R. Zwicky, JHEP 1608, 098 (2016). arXiv:1503.05534 [hep-ph]

    ADS  Google Scholar 

  23. N. Serra, R. Silva Coutinho, D. van Dyk, Phys. Rev. D 95(3), 035029 (2017). arXiv:1610.08761 [hep-ph]

    ADS  Google Scholar 

  24. B. Capdevila, S. Descotes-Genon, L. Hofer, J. Matias, JHEP 1704, 016 (2017). arXiv:1701.08672 [hep-ph]

    ADS  Google Scholar 

  25. M. Prim, Belle collaboration, Study of Lepton universality at Belle, talk at Moriond (2019)

  26. A. Abdesselam et al., Belle collaboration. arXiv:1904.02440 [hep-ex]

  27. R. Aaij et al., LHCb collaboration. Phys. Rev. Lett. 111, 191801 (2013). arXiv:1308.1707 [hep-ex]

  28. R. Aaij et al., LHCb collaboration. JHEP 1602, 104 (2016). arXiv:1512.04442 [hep-ex]

  29. A. Abdesselam et al., Belle collaboration. arXiv:1604.04042 [hep-ex]

  30. S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 1305, 137 (2013). arXiv:1303.5794 [hep-ph]

    ADS  Google Scholar 

  31. M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini, M. Valli, JHEP 1606, 116 (2016). arXiv:1512.07157 [hep-ph]

    ADS  Google Scholar 

  32. M. Aaboud et al., ATLAS collaboration. JHEP 1810, 047 (2018). arXiv:1805.04000 [hep-ex]

  33. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 781, 517 (2018). arXiv:1710.02846 [hep-ex]

  34. R. Aaij et al., LHCb collaboration. JHEP 1307, 084 (2013). arXiv:1305.2168 [hep-ex]

  35. R. Aaij et al., LHCb collaboration. JHEP 1509, 179 (2015). arXiv:1506.08777 [hep-ex]

  36. B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, J. Virto. arXiv:1704.05340 [hep-ph]

  37. W. Altmannshofer, P. Stangl, D.M. Straub, Phys. Rev. D 96(5), 055008 (2017). arXiv:1704.05435 [hep-ph]

    ADS  Google Scholar 

  38. G. Hiller, I. Nisandzic, Phys. Rev. D 96(3), 035003 (2017). arXiv:1704.05444 [hep-ph]

    ADS  Google Scholar 

  39. L.S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X .L. Ren, R .X. Shi, Phys. Rev. D 96(9), 093006 (2017). arXiv:1704.05446 [hep-ph]

    ADS  Google Scholar 

  40. M. Ciuchini, A.M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli, Eur. Phys. J. C 77(10), 688 (2017). arXiv:1704.05447 [hep-ph]

    Google Scholar 

  41. G. D’Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia, R. Torre, A. Urbano, JHEP 1709, 010 (2017). arXiv:1704.05438 [hep-ph]

    ADS  Google Scholar 

  42. A.K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar, D. London, Phys. Rev. D 96(9), 095009 (2017). arXiv:1704.07397 [hep-ph]

    ADS  Google Scholar 

  43. A.K. Alok, B. Bhattacharya, D. Kumar, J. Kumar, D. London, S.U. Sankar, Phys. Rev. D 96(1), 015034 (2017). arXiv:1703.09247 [hep-ph]

    ADS  Google Scholar 

  44. D. Kumar, J. Saini, S. Gangal, S .B. Das, Phys. Rev. D 97(3), 035007 (2018). arXiv:1711.01989 [hep-ph]

    ADS  Google Scholar 

  45. S. Kumbhakar, J. Saini, Eur. Phys. J. C 79(5), 394 (2019). arXiv:1807.04055 [hep-ph]

    ADS  Google Scholar 

  46. M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias, J. Virto. arXiv:1903.09578 [hep-ph]

  47. A.K. Alok, A. Dighe, S. Gangal, D. Kumar. arXiv:1903.09617 [hep-ph]

  48. M. Ciuchini, A.M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli. arXiv:1903.09632 [hep-ph]

  49. A. Datta, J. Kumar, D. London. arXiv:1903.10086 [hep-ph]

  50. J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl, D.M. Straub. arXiv:1903.10434 [hep-ph]

  51. K. Kowalska, D. Kumar, E.M. Sessolo. arXiv:1903.10932 [hep-ph]

  52. A. Arbey, T. Hurth, F. Mahmoudi, D. Martinez Santos, S. Neshatpour. arXiv:1904.08399 [hep-ph]

  53. G. Eilam, J.L. Hewett, A. Soni, Phys. Rev. D 44, 1473 (1991). Erratum-ibid. D 59, 039901 (1999)

  54. J.A. Aguilar-Saavedra, Acta Phys. Polon. B 35, 2695 (2004). arXiv:hep-ph/0409342

    ADS  Google Scholar 

  55. M. Aaboud et al., ATLAS collaboration. JHEP 1807, 176 (2018). arXiv:1803.09923 [hep-ex]

  56. A.M. Sirunyan et al., CMS Collaboration. JHEP 1707, 003 (2017). arXiv:1702.01404 [hep-ex]

  57. J.L. Hewett, T.G. Rizzo, Han:1996ep, Beneke:2000hk. Phys. Rev. D 49, 319 (1994). arXiv:hep-ph/9305223

    ADS  Google Scholar 

  58. T. Han, R.D. Peccei, X. Zhang, Nucl. Phys. B 454, 527 (1995). arXiv:hep-ph/9506461

    ADS  Google Scholar 

  59. T. Han, K. Whisnant, B.L. Young, X. Zhang, Phys. Rev. D 55, 7241 (1997). arXiv:hep-ph/9603247

    ADS  Google Scholar 

  60. M. Beneke et al., in *Geneva 1999, Standard Model Physics (and more) at the LHC*, pp. 419–529. arXiv:hep-ph/0003033

  61. J.J. Liu, C.S. Li, L.L. Yang, L.G. Jin, Phys. Rev. D 72, 074018 (2005). arXiv:hep-ph/0508016

    ADS  Google Scholar 

  62. B. Grzadkowski, M. Misiak, Phys. Rev. D 78, 077501 (2008); Erratum: Phys. Rev. D 84, 059903 (2011). arXiv:0802.1413 [hep-ph]

  63. P.M. Ferreira, R.B. Guedes, R. Santos, Phys. Rev. D 77, 114008 (2008). arXiv:0802.2075 [hep-ph]

    ADS  Google Scholar 

  64. J.J. Zhang, C.S. Li, J. Gao, H. Zhang, Z. Li, C.-P. Yuan, T.C. Yuan, Phys. Rev. Lett. 102, 072001 (2009). arXiv:0810.3889 [hep-ph]

    ADS  Google Scholar 

  65. R.A. Coimbra, P.M. Ferreira, R.B. Guedes, O. Oliveira, A. Onofre, R. Santos, M. Won, Phys. Rev. D 79, 014006 (2009). arXiv:0811.1743 [hep-ph]

    ADS  Google Scholar 

  66. X.Q. Li, Y.D. Yang, X.B. Yuan, JHEP 1203, 018 (2012). arXiv:1112.2674 [hep-ph]

    ADS  Google Scholar 

  67. H. Gong, Y.D. Yang, X.B. Yuan, JHEP 1305, 062 (2013). arXiv:1301.7535 [hep-ph]

    ADS  Google Scholar 

  68. G. Durieux, F. Maltoni, C. Zhang, Phys. Rev. D 91(7), 074017 (2015). arXiv:1412.7166 [hep-ph]

    ADS  Google Scholar 

  69. E. Nardi, Phys. Lett. B 365, 327 (1996). arXiv:hep-ph/9509233

    ADS  Google Scholar 

  70. M. Chala, J. Santiago, M. Spannowsky, JHEP 1904, 014 (2019). arXiv:1809.09624 [hep-ph]

    ADS  Google Scholar 

  71. S. Banerjee, M. Chala, M. Spannowsky, Eur. Phys. J. C 78(8), 683 (2018). arXiv:1806.02836 [hep-ph]

    ADS  Google Scholar 

  72. H. Khanpour, S. Khatibi, M. Khatiri Yanehsari, M. Mohammadi Najafabadi, Phys. Lett. B 775, 25 (2017). arXiv:1408.2090 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  73. C.W. Chiang, U.K. Dey, T. Jha, Eur. Phys. J. Plus 134(5), 210 (2019). arXiv:1807.01481 [hep-ph]

    Google Scholar 

  74. K. Agashe, G. Perez, A. Soni, Phys. Rev. D 75, 015002 (2007). arXiv:hep-ph/0606293

    ADS  Google Scholar 

  75. R. Gaitán, R. Martinez, J.H.M. de Oca, E.A. Garcés, Phys. Rev. D 98(3), 035031 (2018). arXiv:1710.04262 [hep-ph]

    ADS  Google Scholar 

  76. J.A. Aguilar-Saavedra, Phys. Rev. D 67, 035003 (2003); Erratum: Phys. Rev. D 69, 099901 (2004). arXiv:hep-ph/0210112

  77. J.A. Aguilar-Saavedra, Nucl. Phys. B 812, 181 (2009). arXiv:0811.3842 [hep-ph]

    ADS  Google Scholar 

  78. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996). hep-ph/9512380

    ADS  Google Scholar 

  79. D. Rein, L.M. Sehgal, Phys. Rev. D 39, 3325 (1989)

    ADS  Google Scholar 

  80. J.S. Hagelin, L.S. Littenberg, Prog. Part. Nucl. Phys. 23, 1 (1989)

    ADS  Google Scholar 

  81. G. Buchalla, A.J. Buras, Nucl. Phys. B 412, 106 (1994). arXiv:hep-ph/9308272

    ADS  Google Scholar 

  82. G. Buchalla, A.J. Buras, Nucl. Phys. B 548, 309 (1999). arXiv:hep-ph/9901288

    ADS  Google Scholar 

  83. S. Aoki et al., Flavour lattice averaging group. arXiv:1902.08191 [hep-lat]

  84. F. Mescia, C. Smith, Phys. Rev. D 76, 034017 (2007). arXiv:0705.2025 [hep-ph]

    ADS  Google Scholar 

  85. http://www.utfit.org/UTfit/ResultsSummer2018SM

  86. M. Tanabashi et al., Particle data group. Phys. Rev. D 98(3), 030001 (2018)

  87. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    ADS  Google Scholar 

  88. Y.S. Amhis et al., HFLAV collaboration. arXiv:1909.12524 [hep-ex]

  89. R. Aaij et al., LHCb collaboration. JHEP 1611, 047 (2016). arXiv:1606.04731 [hep-ex]

  90. CDF Collaboration, CDF public note 10894

  91. S. Chatrchyan et al., CMS collaboration. Phys. Lett. B 727, 77 (2013). arXiv:1308.3409 [hep-ex]

  92. V. Khachatryan et al., CMS collaboration, Phys. Lett. B 753, 424 (2016); arXiv:1507.08126 [hep-ex]. For combined results of 7 and 8 TeV data see the table in the webpage https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsBPH13010

  93. R. Aaij et al., LHCb collaboration. JHEP 1406, 133 (2014). arXiv:1403.8044 [hep-ex]

  94. J.P. Lees et al., BaBar collaboration. Phys. Rev. Lett. 112, 211802 (2014). arXiv:1312.5364 [hep-ex]

  95. D.M. Straub. arXiv:1810.08132 [hep-ph]

  96. S. Wehle et al., Belle collaboration. Phys. Rev. Lett. 11811, 111801 (2017). arXiv:1612.05014 [hep-ex]

  97. R. Aaij et al., LHCb collaboration. JHEP 1305, 159 (2013). arXiv:1304.3035 [hep-ex]

  98. R. Aaij et al., LHCb collaboration. Phys. Rev. Lett. 12219, 191801 (2019). arXiv:1903.09252 [hep-ex]

  99. R. Aaij et al., LHCb collaboration. JHEP 1504, 064 (2015). arXiv:1501.03038 [hep-ex]

  100. J.-T. Wei et al., Belle collaboration. Phys. Rev. D 78, 011101 (2008). arXiv:0804.3656 [hep-ex]

  101. J.P. Lees et al., BaBar collaboration. Phys. Rev. D 883, 032012 (2013). arXiv:1303.6010 [hep-ex]

  102. R. Aaij et al., LHCbcollaboration. JHEP 1212, 125 (2012). arXiv:1210.2645 [hep-ex]

  103. J.J. Wang, R.M. Wang, Y.G. Xu, Y.D. Yang, Phys. Rev. D 77, 014017 (2008). arXiv:0711.0321 [hep-ph]

    ADS  Google Scholar 

  104. P. Ball, R. Zwicky, Phys. Rev. D 71, 014015 (2005). arXiv:hep-ph/0406232

    ADS  Google Scholar 

  105. A.J. Buras, M. Gorbahn, U. Haisch, U. Nierste, JHEP 0611, 002 (2006); Erratum-ibid. 1211, 167 (2012). arXiv:hep-ph/0603079

  106. W. Bernreuther, J. Phys. G 35, 083001 (2008). arXiv:0805.1333 [hep-ph]

    ADS  Google Scholar 

  107. C.S. Li, R.J. Oakes, T.C. Yuan, Phys. Rev. D 43, 3759 (1991)

    ADS  Google Scholar 

  108. K. Shiomi, KOTO collaboration. PoS ICHEP 2018, 528 (2019). https://doi.org/10.22323/1.340.0528

  109. J.K. Ahn et al., E391a collaboration. Phys. Rev. D 81, 072004 (2010). arXiv:0911.4789 [hep-ex]

  110. K. Shiomi, KOTO collaboration. arXiv:1411.4250 [hep-ex]

  111. W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, JHEP 0901, 019 (2009). arXiv:0811.1214 [hep-ph]

    ADS  Google Scholar 

  112. A.K. Alok, A. Dighe, S. Ray, Phys. Rev. D 79, 034017 (2009). arXiv:0811.1186 [hep-ph]

    ADS  Google Scholar 

  113. A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, JHEP 1111, 122 (2011). arXiv:1103.5344 [hep-ph]

    ADS  Google Scholar 

  114. W. Altmannshofer, D.M. Straub, Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501 [hep-ph]

    ADS  Google Scholar 

  115. R. Aaij et al., LHCb collaboration. Phys. Rev. Lett. 1103, 031801 (2013). arXiv:1210.4492 [hep-ex]

  116. R. Aaij et al., LHCb collaboration. Phys. Rev. Lett. 11115, 151801 (2013). arXiv:1308.1340 [hep-ex]

  117. R. Aaij et al., LHCb collaboration. JHEP 1409, 177 (2014). arXiv:1408.0978 [hep-ex]

  118. A. Cerri et al., CERN Yellow Rep. Monogr. 7, 867 (2019). arXiv:1812.07638 [hep-ph]

    Google Scholar 

  119. C. Bobeth, G. Hiller, G. Piranishvili, JHEP 0807, 106 (2008). arXiv:0805.2525 [hep-ph]

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. K. Alok, Dinesh Kumar, Jacky Kumar and Gauhar Abbas for useful discussions. We are thankful to the referee for his/her comments and suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhakar, S., Saini, J. Flavor signatures of complex anomalous tcZ couplings. Eur. Phys. J. Plus 135, 330 (2020). https://doi.org/10.1140/epjp/s13360-020-00341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00341-8

Navigation