Skip to main content
Log in

Plane symmetric model in f(RT) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A plane symmetric Bianchi-I model is explored in f(RT) gravity, where R is the Ricci scalar and T is the trace of energy–momentum tensor. The solutions are obtained with the consideration of a specific Hubble parameter which yields a constant deceleration parameter. The various evolutionary phases are identified under the constraints obtained for physically viable cosmological scenarios. Although a single (primary) matter source is taken, due to the coupling between matter and f(RT) gravity, an additional matter source appears, which mimics a perfect fluid or exotic matter. The solutions are also extended to the case of a scalar field model. The kinematical behavior of the model remains independent of f(RT) gravity. The physical behavior of the effective matter also remain the same as in general relativity. It is found that f(RT) gravity can be a good alternative to the hypothetical candidates of dark energy to describe the present accelerating expansion of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. \(\rho \ge 0\), \(\rho +p\ge 0\).

  2. \(\rho +p\ge 0\).

  3. \(\rho \ge |p|\), i.e., \(\rho \pm p\ge 0\).

  4. \(\rho +3p\ge 0\).

References

  1. K. Bamba et al., Astrophys. Space Sci. 342, 155–228 (2012). arXiv:1205.3421

  2. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59–114 (2011). arXiv:1011.0544

    ADS  MathSciNet  Google Scholar 

  3. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011). arXiv:1104.2669

    ADS  Google Scholar 

  4. M. Jamil, D. Momeni, M. Raza, R. Myrzakulov, Eur. Phys. J. C 72, 1999 (2012). arXiv:1107.5807

    ADS  Google Scholar 

  5. M.J.S. Houndjo, O.F. Piattella, Int. J. Mod. Phys. D 2, 1250024 (2012). arXiv:1111.4275

    Google Scholar 

  6. F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, J.B.C. Oron, J. Mod. Phys. 4, 130–139 (2013). arXiv:1205.4678 [gr-qc]

    Google Scholar 

  7. T. Azizi, Int. J. Theor. Phys. 52, 3486–3493 (2013). arXiv:1205.6957 [gr-qc]

    Google Scholar 

  8. F.G. Alvarenga, A. de la Cruz-Dombriz, M.J.S. Houndjo, M.E. Rodrigues, D. Sáez-Gómez, Phys. Rev. D 87, 103526 (2013). arXiv:1302.1866 [gr-qc]

    ADS  Google Scholar 

  9. M. Sharif, S. Rani, R. Myrzakulov, Eur. Phys. J. Plus 128, 123 (2013). arXiv:1210.2714 [gr-qc]

    Google Scholar 

  10. S. Chakraborty, Gen. Relat. Gravity 45, 2039–2052 (2013). arXiv:1212.3050 [gen-ph]

    ADS  Google Scholar 

  11. M.J.S. Houndjo, C.E.M. Batista, J.P. Campos, O.F. Piattella, Can. J. Phys. 91, 548–553 (2013). arXiv:1203.6084 [gr-qc]

    ADS  Google Scholar 

  12. H. Shabani, M. Farhoudi, Phys. Rev. D 88, 044048 (2013). arXiv:1306.3164 [gr-qc]

    ADS  Google Scholar 

  13. A. Pasqua, S. Chattopadhyay, I. Khomenkoc, Can. J. Phys. 91, 632–638 (2013). arXiv:1305.1873 [gen-ph]

    ADS  Google Scholar 

  14. P. Kumar, C.P. Singh, Astrophys. Space Sci. 357, 120 (2015)

    ADS  Google Scholar 

  15. E.H. Baffou, A.V. Kpadonou, M.E. Rodrigues, M.J.S. Houndjo, J. Tossa, Astrphys. Space Sci. 356, 173–180 (2015). arXiv:1312.7311 [gr-qc]

    ADS  Google Scholar 

  16. A.F. Santos, C.J. Ferst, Mod. Phys. Lett. A 30, 1550214 (2015)

    ADS  Google Scholar 

  17. I. Noureen, M. Zubair, Eur. Phys. J. C 75, 62 (2015). arXiv:1501.04484 [gr-qc]

    ADS  Google Scholar 

  18. M. Zubair, I. Noureen, Eur. Phys. J. C 75, 265 (2015). arXiv:1505.00744 [gr-qc]

    ADS  Google Scholar 

  19. I. Noureen, M. Zubair, A.A. Bhatti, G. Abbas, Eur. Phys. J. C 75, 323 (2015). arXiv:1504.01251 [gr-qc]

    ADS  Google Scholar 

  20. V. Singh, C.P. Singh, Int. J. Theor. Phys. 55, 1257 (2016)

    Google Scholar 

  21. A. Alhamzawi, R. Alhamzawi, Int. J. Mod. Phys. D 35, 1650020 (2016)

    MathSciNet  Google Scholar 

  22. A. Salehi, S. Aftabi, J. High Energy Phys. 09, 140 (2016). arXiv:1502.04507 [gr-qc]

    ADS  Google Scholar 

  23. D. Momeni, P.H.R.S. Moraes, R. Myrzakulov, Astrophys. Space Sci. 361, 228 (2016). arXiv:1512.04755 [gr-qc]

    ADS  Google Scholar 

  24. M.E.S. Alves, P.H.R.S. Moraes, J.C.N. de Araujo, M. Malheiro, Phys. Rev. D 94, 024032 (2016). arXiv:1604.03874 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  25. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93, 124048 (2016). arXiv:1606.00147 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  26. P.H.R.S. Moraes, R.A.C. Correa, G. Ribeiro, Eur. Phys. J. C 78, 192 (2018). arXiv:1606.07045 [gr-qc]

    ADS  Google Scholar 

  27. M. Zubair, S. Waheed, Y. Ahmad, Eur. Phys. J. C 76, 444 (2016). arXiv:1607.05998 [gr-qc]

    ADS  Google Scholar 

  28. A. Das, F. Rahaman, B.K. Guha, S. Ray, Eur. Phys. J. C 76, 654 (2016). arXiv:1608.00566 [gr-qc]

    ADS  Google Scholar 

  29. P.K. Sahoo, P.H.R.S. Moraes, P. Sahoo, Eur. Phys. J. C 78, 46 (2018). arXiv:1709.07774 [gr-qc]

    ADS  Google Scholar 

  30. V. Singh, A. Beesham, Eur. Phys. J. C 78, 564 (2018)

    ADS  Google Scholar 

  31. M. Srivastava, C.P. Singh, Astrophys. Space Sci. 363, 117 (2018)

    ADS  Google Scholar 

  32. M. Sharif, A. Anwar, Astrophys. Space Sci. 363, 123 (2018)

    ADS  Google Scholar 

  33. H. Shabani, A.H. Ziaie, Eur. Phys. J. C 78, 397 (2018). arXiv:1708.07874 [gr-qc]

    ADS  Google Scholar 

  34. M.Z. Bhatti, Z. Yousaf, M. Ilyas, Eur. Phys. J. C 77, 690 (2017). arXiv:1709.06892 [gr-qc]

    ADS  Google Scholar 

  35. F. Rajabi, K. Nozari, Phys. Rev. D 96, 084061 (2017). arXiv:1710.01910 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  36. P.H.R.S. Moraes, W. de Paula, R.A.C. Correa, Int. J. Mod. Phys. D 28, 1950098 (2019). arXiv:1710.07680 [gr-qc]

    ADS  Google Scholar 

  37. R.V. Lobato, G.A. Carvalho, A.G. Martins, P.H.R.S. Moraes, Eur. Phys. J. Plus 134, 132 (2019). arXiv:1803.08630 [gr-qc]

    Google Scholar 

  38. E.H. Baffou, M.J.S. Houndjo, D.A. Kanfon, I.G. Salako, Phys. Rev. D 98, 124037 (2018). arXiv:1808.01917 [gr-qc]

    MathSciNet  Google Scholar 

  39. D. Deb, B.K. Guha, F. Rahaman, S. Ray, Phys. Rev. D 97, 084026 (2018). arXiv:1810.01409 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  40. D. Deb et al., Mon. Not. R. Astron. Soc. 485, 5652 (2019). arXiv:1810.07678 [gr-qc]

    ADS  Google Scholar 

  41. P.V. Tretyakov, Eur. Phys. J. C 78, 896 (2018). arXiv:1810.11313 [gr-qc]

    ADS  Google Scholar 

  42. E. Elizalde, M. Khurshudyan, Phys. Rev. D 98, 123525 (2018). arXiv:1811.11499 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  43. T.M. Ordines, E.D. Carlson, Phys. Rev. D 99, 104052 (2019). arXiv:1902.05858 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  44. S.K. Maurya, F. Tello-Ortizb, J. Cosmol. Astropart. Phys. 28, 1950056 (2019). arXiv:1905.13519 [gr-qc]

    Google Scholar 

  45. P.S. Debnath, Int. J. Geom. Methods Mod. Phys. 16, 1950005 (2019). arXiv:1907.02238 [gr-qc]

    MathSciNet  Google Scholar 

  46. S.K. Maurya, A. Banerjee, F. Tello-Ortiz, Phys. Dark Univ. 27, 100438 (2020). arXiv:1907.05209 [gen-ph]

    Google Scholar 

  47. P.K. Sahoo, S. Bhattacharjee. arXiv:1907.13460 [gen-phys]

  48. C.B. Netterfield et al., Astrophy. J. 571, 604–614 (2002). arXiv:astro-ph/0104460

    ADS  Google Scholar 

  49. C.L. Bennett et al., Astrophys. J. Supp. Ser. 208, 20 (2013). arXiv:1212.5225 [astro-ph]

    ADS  Google Scholar 

  50. G. Hinshaw et al., Astrophys. J. Supp. Ser. 208, 19 (2013). arXiv:1212.5226 [astro-ph]

    ADS  Google Scholar 

  51. Planck Collaboration. arXiv:1807.06209 [gr-qc]

  52. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 81, 114005 (2012). arXiv:1301.2251 [gr-qc]

    ADS  Google Scholar 

  53. M.F. Shamir, J. Exp. Theor. Phys. 119, 242 (2014)

    Google Scholar 

  54. M.F. Shamir, Eur. Phys. J. C 75, 354 (2015). arXiv:1507.08175 [gen-ph]

    ADS  Google Scholar 

  55. R.K. Tiwari, A. Beesham, Astrophys. Space Sci. 363, 234 (2018)

    ADS  Google Scholar 

  56. F.M. Esmaeili, J. High Energy Phys., Gravity Cosmol. 4, 716 (2018)

    Google Scholar 

  57. D.R.K. Reddy, R.L. Naidu, B. Satyanarayana, Int. J. Theor. Phys. 51, 3222 (2012)

    Google Scholar 

  58. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 014002 (2013). arXiv:1210.3878 [gr-qc]

    ADS  Google Scholar 

  59. S. Ram, Y. Priyanka, Astrophys. Space Sci. 347, 389 (2013)

    ADS  Google Scholar 

  60. P.H.R.S. Moraes, Eur. Phys. J. C 75, 168 (2015)

    ADS  Google Scholar 

  61. D. Sofuoglu, Astrophys. Space Sci. 361, 12 (2016)

    ADS  MathSciNet  Google Scholar 

  62. K.S. Adhav, Astrophys. Space Sci. 339, 365–369 (2012)

    ADS  Google Scholar 

  63. V. Singh, A. Beesham, arXiv:2003.04602

  64. P.K. Sahoo, B. Mishra, G.C. Reddy, Eur. Phys. J. Plus 129, 49 (2014)

    Google Scholar 

  65. V. Singh, A. Beesham, arXiv:2002.08654 [gr-qc]

  66. V. Singh, A. Beesham, Gen. Relat. Gravity 51, 166 (2019). arXiv:1912.05850 [gr-qc]

    ADS  Google Scholar 

  67. N. Benerjee, S. Das, Gen. Relat. Gravity 37, 1695 (2005). arXiv:astro-ph/0505121

    ADS  Google Scholar 

  68. O. Akarsu, T. Dereli, Int. J. Theor. Phys. 51, 612 (2012). arXiv:1102.0915 [gr-qc]

    Google Scholar 

  69. C.P. Singh, V. Singh, Int. J. Theor. Phys. 51, 1889 (2012)

    Google Scholar 

  70. C.P. Singh, V. Singh, Astrophys. Space Sci. 339, 101 (2012)

    ADS  Google Scholar 

  71. V. Singh, C.P. Singh, Astrophys. Space Sci. 346, 285 (2013)

    ADS  Google Scholar 

  72. C.P. Singh, V. Singh, Gen. Relat. Gravity. 46, 1696 (2014)

    ADS  Google Scholar 

  73. V. Singh, C.P. Singh, Astrophys. Space Sci. 356, 153 (2015)

    ADS  Google Scholar 

  74. V. Singh, A. Beesham, Int. J. Geom. Methods Mod. Phys. 15, 1850145 (2018)

    MathSciNet  Google Scholar 

  75. V. Singh, A. Beesham, Int. J. Mod. Phys. D 28, 1950056 (2019). arXiv:1912.05305 [gr-qc]

    ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewer for showing his deep interest in this work. His suggestions and constructive comments were very helpful to improve the presentation of the results. Vijay Singh expresses his sincere thank to the University of Zululand, South Africa, for providing a postdoctoral fellowship and necessary facilities. This work is based on the research supported wholly/in part by the National Research Foundation of South Africa (Grant Numbers: 118511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Beesham, A. Plane symmetric model in f(RT) gravity. Eur. Phys. J. Plus 135, 319 (2020). https://doi.org/10.1140/epjp/s13360-020-00314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00314-x

Navigation