Skip to main content

Advertisement

Log in

Entropy generation for spiral heat exchanger with considering NEPCM charging process using hybrid nanomaterial

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In current unsteady simulation, charging of paraffin in an enclosure which is equipped with spiral pipe was scrutinized. Not only in paraffin but also in water inside the pipe, nanoparticles were dispersed to boost the thermal treatment. Outputs were reported in various stages in forms of irreversibility components. Increasing inlet velocity leads to higher liquid fraction which means better performance. As time increases, inlet velocity has lower effect on melting process. Increasing pumping power is beneficial only when time is lower than 20 min. Frictional irreversibility increases with time at initial time, and then, it reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Sheikholeslami, A. Ghasemi, Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int. J. Heat Mass Transf. 123, 418–431 (2018)

    Google Scholar 

  2. M. Sheikholeslami, Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J. Taiwan Inst. Chem. Eng. 86, 25–41 (2018)

    Google Scholar 

  3. M. Sheikholeslami, R. Haq, A. Shafee, Z. Li, Y.G. Elaraki, I. Tlili, Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transf. 135, 470–478 (2019)

    Google Scholar 

  4. M. Sheikholeslami, R. Haq, A. Shafee, Z. Li, Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transf. 130, 1322–1342 (2019)

    Google Scholar 

  5. M. Sheikholeslami, M.K. Sadoughi, Simulation of CuO- water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)

    Google Scholar 

  6. S.A. Farshad, M. Sheikholeslami, Turbulent nanofluid flow through a solar collector influenced by multi-channel twisted tape considering entropy generation. Eur. Phys. J. Plus 134, 149 (2019). https://doi.org/10.1140/epjp/i2019-12606-2

    Article  Google Scholar 

  7. Z. Li, M. Sheikholeslami, A.S. Mittal, A. Shafee, R. Haq, Nanofluid heat transfer in a porous duct in existence of Lorentz forces using Lattice Boltzmann method. Eur. Phys. J. Plus 134, 30 (2019). https://doi.org/10.1140/epjp/i2019-12406-8

    Article  Google Scholar 

  8. L. Yang, M. Mao, J.N. Huang, W. Ji, Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 356, 335–341 (2019)

    Google Scholar 

  9. M. Sheikholeslami, Numerical approach for MHD \(\text{ Al }_{2}\text{ O }_{3}\)-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  10. M. Sheikholeslami, B. Rezaeianjouybari, M. Darzi, A. Shafee, Z. Li, T.K. Nguyen, Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 141, 974–980 (2019)

    Google Scholar 

  11. N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, Eur. Phys. J. Plus 132, 54 (2017)

    Google Scholar 

  12. M. Sheikholeslami, Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J. Mol. Liq. 266, 495–503 (2018)

    Google Scholar 

  13. F. Mabood, S. Shateyi, A. Khan, Eur. Phys. J. Plus 130, 188 (2015)

    Google Scholar 

  14. B. Rezaeianjouybari, M. Sheikholeslami, A. Shafee, H. Babazadeh, A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem. Eng. Sci. 215, 115465 (2020)

    Google Scholar 

  15. M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  16. M. Sheikholeslami, H.B. Rokni, Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. Eur. Phys. J. Plus 132, 238 (2017). https://doi.org/10.1140/epjp/i2017-11498-4

    Article  Google Scholar 

  17. M. Sheikholeslami, M.M. Bhatti, Active method for nanofluid heat transfer enhancement by means of EHD. Int. J. Heat Mass Transf. 109, 115–122 (2017)

    Google Scholar 

  18. M. Sheikholeslami, M.A. Sheremet, A. Shafee, I. Tlili, Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Phys. A Stat. Mech. Appl. (2020). https://doi.org/10.1016/j.physa.2019.124058

    Article  Google Scholar 

  19. M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015)

    Google Scholar 

  20. M. Sheikholeslami, H.B. Rokni, Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int. J. Heat Mass Transf. 114, 517–526 (2017)

    Google Scholar 

  21. M. Sheikholeslami, Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265, 347–355 (2018)

    Google Scholar 

  22. M. Sheikholeslami, Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J. Mol. Liq. 263, 303–315 (2018)

    Google Scholar 

  23. M. Sheikholeslami, Z. Li, A. Shafee, Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int. J. Heat Mass Transf. 127, 665–674 (2018)

    Google Scholar 

  24. M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee, S. Saleem, Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int. J. Heat Mass Transf. 126, 1252–1264 (2018)

    Google Scholar 

  25. M. Sheikholeslami, Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J. Mol. Liq. 259, 424–438 (2018)

    Google Scholar 

  26. Z. Li, M. Sheikholeslami, Z. Shah, A. Shafee, A.-R. Al-Qawasmi, I. Tlili, Transient process in a finned triplex tube during phase changing of aluminum oxide enhanced PCM. Eur. Phys. J. Plus 134, 173 (2019). https://doi.org/10.1140/epjp/i2019-12627-9

    Article  Google Scholar 

  27. M. Sheikholeslami, O. Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J. Clean. Prod. 215, 963–977 (2019)

    Google Scholar 

  28. F. Agyenim, P. Eames, M. Smyth, Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew. Energy 35(1), 198–207 (2010)

    Google Scholar 

  29. M. Sheikholeslami, Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann Method. J. Mol. Liq. 234, 364–374 (2017)

    Google Scholar 

  30. Y. Qin, H. He, A new simplified method for measuring the albedo of limited extent targets. Sol. Energy 157(Supplement C), 1047–1055 (2017)

    ADS  Google Scholar 

  31. M. Sheikholeslami, Influence of magnetic field on \(\text{ Al }_{2}\text{ O }_{3}\)\(\text{ H }_{2}\text{ O }\) nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J. Mol. Liq. 263, 472–488 (2018)

    Google Scholar 

  32. L. Yang, J. Xu, K. Du, X. Zhang, Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol. 317, 348–369 (2017)

    Google Scholar 

  33. M. Sheikholeslami, S.A. Shehzad, Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int. J. Heat Mass Transf. 120, 1200–1212 (2018)

    Google Scholar 

  34. M. Sheikholeslami, M. Seyednezhad, Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int. J. Heat Mass Transf. 120, 772–781 (2018)

    Google Scholar 

  35. Y. Qin, Y. He, B. Wu, S. Ma, X. Zhang, Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 156(Supplement C), 218–224 (2017)

    Google Scholar 

  36. M. Sheikholeslami, Magnetic field influence on CuO–\(\text{ H }_{2}\text{ O }\) nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int. J. Hydrogen Energy 42, 19611–19621 (2017)

    Google Scholar 

  37. M. Sheikholeslami, S.A. Shehzad, CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int. J. Heat Mass Transf. 122, 1264–1271 (2018)

    Google Scholar 

  38. M. Sheikholeslami, M. Darzi, M.K. Sadoughi, Heat transfer improvement and pressure drop during condensation of refrigerant-based Nanofluid. Exp. Proced. Int. J. Heat Mass Trans. 122, 643–650 (2018)

    Google Scholar 

  39. Y. Qin, Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int. J. Heat Mass Transf. 97, 391–399 (2016)

    Google Scholar 

  40. M. Sheikholeslami, Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J. Mol. Liq. 249, 1212–1221 (2018)

    Google Scholar 

  41. M. Sheikholeslami, CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J. Mol. Liq. 249, 921–929 (2018)

    Google Scholar 

  42. M. Sheikholeslami, Numerical investigation for CuO–\(\text{ H }_{2}\text{ O }\) nanofluid flow in a porous channel with magnetic field using mesoscopic method. J. Mol. Liq. 249, 739–746 (2018)

    Google Scholar 

  43. Y. Qin, J. Liang, K. Tan, F. Li, A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol. Energy 133, 172–179 (2016)

    ADS  Google Scholar 

  44. M. Sheikholeslami, S.A. Shehzad, Numerical analysis of \(\text{ Fe }_{3}\text{ O }_{4}\)\(\text{ H }_{2}\text{ O }\) nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 118, 182–192 (2018)

    Google Scholar 

  45. M. Sheikholeslami, H.B. Rokni, Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018)

    Google Scholar 

  46. Y. Qin, J. Liang, H. Yang, Z. Deng, Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement 78, 104–110 (2016)

    Google Scholar 

  47. M. Sheikholeslami, S.A. Shehzad, CVFEM for influence of external magnetic source on \(\text{ Fe }_{3}\text{ O }_{4}\)\(\text{ H }_{2}\text{ O }\) nanofluid behavior in a permeable cavity considering shape effect. Int. J. Heat Mass Transf. 115, 180–191 (2017)

    Google Scholar 

  48. M. Sheikholeslami, M. Seyednezhad, Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int. J. Heat Mass Transf. 114, 1169–1180 (2017)

    Google Scholar 

  49. Y. Qin, J.E. Hiller, Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 85, 389–399 (2014)

    Google Scholar 

  50. M. Sheikholeslami, M. Sadoughi, Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int. J. Heat Mass Transf. 113, 106–114 (2017)

    Google Scholar 

  51. M. Sheikholeslami, M.M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int. J. Heat Mass Transf. 111, 1039–1049 (2017)

    Google Scholar 

  52. Y. Qin, M. Zhang, G. Mei, A new simplified method for measuring the permeability characteristics of highly porous media. J. Hydrol. 562, 725–732 (2018)

    ADS  Google Scholar 

  53. M. Sheikholeslami, S.A. Shehzad, Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int. J. Heat Mass Transf. 109, 82–92 (2017)

    Google Scholar 

  54. M. Sheikholeslami, H.B. Rokni, Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transf. 107, 288–299 (2017)

    Google Scholar 

  55. Y. Qin, Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 96, 86–94 (2015)

    Google Scholar 

  56. M. Sheikholeslami, S.A. Farshad, A. Shafee, I. Tlili, Modeling of solar system with helical swirl flow device considering nanofluid turbulent forced convection. Phys. A Stat. Mech. Appl. (2020). https://doi.org/10.1016/j.physa.2019.123952

    Article  Google Scholar 

  57. M. Sheikholeslami, A. Nematpour Keshteli, H. Babazadeh, Nanoparticles favorable effects on performance of thermal storage units. J. Mol. Liq. 300, 112329 (2020)

    Google Scholar 

  58. N.H.S. Tay, F. Bruno, M. Belusko, Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Appl. Energy 104, 86–79 (2013)

    Google Scholar 

  59. A.V. Arasu, A.S. Mujumdar, Numerical study on melting of paraffin wax with \(\text{ Al }_{2}\text{ O }_{3}\) in a square enclosure. Int. Commun. Heat Mass Transf. 39, 8–16 (2012)

    Google Scholar 

  60. A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins. Appl. Energy 137, 715–707 (2015)

    Google Scholar 

  61. K.A.R. Ismail, F.A.M. Lino, R.C.R. da Silva, A.B. de Jesus, L.C. Paixao, Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube. Int. J. Therm. Sci. 75, 184–193 (2014)

    Google Scholar 

  62. Y. Qin, H. He, X. Ou, T. Bao, Experimental study on darkening water-rich mud tailings for accelerating desiccation. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2019.118235

    Article  Google Scholar 

  63. M. Sheikholeslami, H.B. Rokni, Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int. J. Heat Mass Transf. 115, 1203–1233 (2017)

    Google Scholar 

  64. Y. Qin, J.E. Hiller, D. Meng, Linearity between pavement thermophysical properties and surface temperatures. J. Mater. Civ. Eng. (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890

    Article  Google Scholar 

  65. M. Sheikholeslami, H.B. Rokni, Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys. Fluids (2018). https://doi.org/10.1063/1.5012517

    Article  Google Scholar 

  66. Y. Qin, J. Luo, Z. Chen, G. Mei, L.-E. Yan, Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol. Energy 171, 971–976 (2018)

    ADS  Google Scholar 

  67. L. Yang, K. Du, A comprehensive review on the natural, forced and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J. Thermal Anal. Calorim. 2019, In press. https://doi.org/10.1007/s10973-019-08987-y

    Google Scholar 

  68. M. Sheikholeslami, M. Jafaryar, A. Shafee, Z. Li, R. Haq, Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int. J. Heat Mass Transf. 136, 1233–1240 (2019)

    Google Scholar 

  69. M. Sheikholeslami, M. Jafaryar, M. Hedayat, A. Shafee, Z. Li, T.K. Nguyen, M. Bakouri, Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int. J. Heat Mass Transf. 137, 1290–1300 (2019)

    Google Scholar 

  70. Y. Qin, A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 52, 445–459 (2015)

    Google Scholar 

  71. Y. Qin, Y. He, J.E. Hiller, G. Mei, A new water-retaining paver block for reducing runoff and cooling pavement. J. Clean. Prod. 199, 948–956 (2018)

    Google Scholar 

  72. M. Sheikholeslami, M. Jafaryar, Z. Li, Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int. J. Heat Mass Transf. 124, 980–989 (2018)

    Google Scholar 

  73. M. Sheikholeslami, S.A. Shehzad, Z. Li, Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int. J. Heat Mass Transf. 125, 375–386 (2018)

    Google Scholar 

  74. M. Sheikholeslami, M. Darzi, Z. Li, Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int. J. Heat Mass Transf. 125, 1087–1095 (2018)

    Google Scholar 

  75. Y. Qin, Y. Zhao, X. Chen, L. Wang, F. Li, T. Bao, Moist curing increases the solar reflectance of concrete. Constr. Build. Mater. 215, 114–118 (2019)

    Google Scholar 

  76. M. Sheikholeslami, S.A. Shehzad, Z. Li, A. Shafee, Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int. J. Heat Mass Transf. 127, 614–622 (2018)

    Google Scholar 

  77. M. Sheikholeslami, M. Jafaryar, S. Saleem, Z. Li, A. Shafee, Y. Jiang, Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int. J. Heat Mass Transf. 126, 156–163 (2018)

    Google Scholar 

  78. Y. Qin, M. Zhang, J.E. Hiller, Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy 129, 138–147 (2017)

    Google Scholar 

  79. M. Sheikholeslami, Lattice Boltzmann Method simulation of MHD non-Darcy nanofluid free convection. Phys. B 516, 55–71 (2017)

    ADS  Google Scholar 

  80. Y. Xiaohu, G. Zengxu, L. Yanhua, J. Liwen, H. Ya-Ling, Effect of inclination on the thermal response of composite phase change materials for thermal energy storage. Appl. Energy 238, 33–22 (2019)

    Google Scholar 

  81. Y. Tao, Y. He, Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary. Appl. Energy 88(11), 4172–4179 (2011)

    Google Scholar 

  82. X. Ma, M. Sheikholeslami, M. Jafaryar, A. Shafee, T. Nguyen-Thoi, Z. Li, Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J. Clean. Prod. 245, 118888 (2020). https://doi.org/10.1016/j.jclepro.2019.118888

    Article  Google Scholar 

  83. M. Sheikholeslami, S.A.M. Mehryan, A. Shafee, M.A. Sheremet, Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J. Mol. Liq. 277, 388–396 (2019)

    Google Scholar 

  84. F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, L. Fan, Int. J. Heat Mass Transf. 52, 3464–3472 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this article through Research Groups Program under Grant Number (R.G. P2. /66/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafee, A., Jafaryar, M., Alghamdi, M. et al. Entropy generation for spiral heat exchanger with considering NEPCM charging process using hybrid nanomaterial. Eur. Phys. J. Plus 135, 285 (2020). https://doi.org/10.1140/epjp/s13360-020-00284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00284-0

Navigation