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Abstract We study the evolution of parton distributions down to low scales by considering
several of their Mellin moments. For the initial conditions, we use a broad array of current
parton density fits. Confirming earlier findings in the literature, we conclude that current
determinations of parton distributions are incompatible with the idea that gluon or antiquark
densities are generated by purely perturbative radiation as it is encoded in the DGLAP
evolution equations.
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1 Introduction

An outstanding question in QCD is the relation between its basic degrees of freedom—
quarks, antiquarks, and gluons—and the concept of “constituent quarks”, which plays a
major role in the description of the spectrum and static properties of hadrons (see section 15
of [1] for a brief overview and references). The internal structure of hadrons at fine spatial
resolution is described by parton distribution functions (PDFs) and similar quantities such as
transverse-momentum-dependent distributions, generalised parton distributions, or double
parton distributions. It is natural to ask how the resulting picture of the proton as a system
made of many quarks, antiquarks and gluons can be related with the picture of the proton as
a bound state of just two up quarks and one down quark.
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A simple and physically intuitive idea, put forward long ago, is that at coarse spatial
resolution the proton contains only valence quarks, and that antiquarks and gluons (as well
as quarks with low momentum fraction) are generated by radiation, i.e. by splitting processes
like q → qg and g → qq̄ that can be computed in QCD perturbation theory [2–4]. In a
technical implementation of this idea, gluon and antiquark distributions are zero at some low
renormalisation scale, and the parton splitting processes encoded in the DGLAP evolution
equations generate nonzero gluon and antiquark distributions at higher scales. However, it
was already found in the 1990s that PDFs constructed along these lines are in conflict with
experimental data [5–7]. Modifying the original idea, the Dortmund group of Glück, Reya,
and their collaborators performed a long series of PDF fits with a low initial renormalisation
scale (typically well below 1 GeV), so that perturbative scale evolution plays a major role in
the shape of these distributions at higher scales. This was done both in the unpolarised and
in the polarised sector; see [8,9] and references therein.

The simple scenario just described has often been used to compute parton distributions
from dynamical quark models; see, for instance, [10,11]. More complicated quantities can
be obtained in the same manner, such as generalised parton distributions [12] or double
parton distributions [13]. The study in [11] concluded that such approaches “tend to give a
qualitative description of the data” but are insufficient at the quantitative level.

Several approaches have been pursued to connect models at low momentum scales with
PDFs. In a formulation put forward long ago [14] and used later, e.g. in [15,16], the three
“constituent quarks” of a proton have an internal structure that involves gluons and antiquarks.
A different line of work is based on the idea that virtual meson fluctuations (often referred
to as “meson cloud”) provide a natural source of antiquarks in the proton even at a low
scale [17]. We refer to section 4.3.1 of [18] for more detail and references, and to [19–21] for
recent applications. The role of gluons in this context is discussed in [22,23]. Yet a different
picture emerges in the chiral quark-soliton model, where the proton has a Dirac sea of quarks
and antiquarks at the typical scale μ ∼ 600 MeV of the model [24,25]. As described in these
papers, gluon distributions in this model are suppressed parametrically compared with quarks
and antiquarks; in physical terms, one has a scenario in which the quark and antiquark degrees
of freedom of the model have themselves a structure that gives rise to gluon distributions.

The goal of the present paper is to approach the preceding discussion from a different angle.
Starting with our present knowledge of PDFs, as encoded in PDF sets fitted to experimental
data by different groups, we wish to investigate the possibility that the distribution functions
for gluons or antiquarks, or both, become zero (or at least small) when one evolves them
backwards to low scales. At a practical level, evolving PDFs from high to low scales is
however delicate, because small changes at the starting scale of evolution quickly blow
up. We circumvent this problem by evolving backwards several Mellin moments of parton
distributions. The evolution of Mellin moments is described by simple differential equations,
which can be solved numerically without numerical stability problems. We can then check
the hypothesis that a given PDF becomes zero under evolution to a low scale by checking
whether several of its moments evolve to zero at one and the same scale μ. To get a sense of
whether perturbative evolution can actually be trusted at low scales, we compare the different
orders for which PDF sets are available, i.e. leading order (LO), next-to-leading order (NLO),
and next-to-next-to-leading order (NNLO).

We note that the scale evolution of PDF moments, including evolution to low scales, has
been considered extensively in spin physics, with a focus on the first moment of the helicity-
dependent PDFs. Indeed, the “proton spin crisis” was triggered by the observation that the val-
ues of these moments extracted from experiment are not consistent with the idea that at a low
scale the spin 1/2 of the proton simply arises from the helicities of its three constituent quarks.
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For details, we refer to the review [26], and for more recent work on the evolution of spin-
dependent PDF moments to [27–29]. In fact, our present work is somewhat similar in spirit to
the study in [28]. That work was concerned with the evolution of the helicity and the total angu-
lar momentum carried by quarks, starting at μ = 2 GeV with input values from lattice calcu-
lations and evolving to low scales in order to compare with quark models. We note that sig-
nificant deviations between LO and higher orders (NLO and NNLO) were found below μ ∼
500 MeV, and we anticipate that we will find the same in the unpolarised sector studied here.

The present work is structured as follows. In Sect. 2, we discuss some obvious caveats of
our study. We then introduce our notation and briefly recall the evolution of Mellin moments
in Sect. 3. In Sect. 4, we present the different PDF sets that we use to compute the starting
values for evolution. In the same section, we quantify to which parton momentum fractions
x one is most sensitive in a given Mellin moment, and we take a brief look at the running of
the strong coupling. In Sect. 5, we investigate in detail the evolution of Mellin moments to
low scales. The main findings of our study are summarised in Sect. 6.

2 Caveats

Our study is subject to several caveats, which we now briefly discuss. Perhaps the most
obvious one is our use of perturbation theory down to rather low scale. In fact, there is a
substantial body of work on the behaviour of αs in the low-scale regime; see, for instance,
the review [30] and the recent lattice studies [31–33]. However, to the best of our knowledge,
there are no corresponding studies for the scale dependence of PDFs or their Mellin moments.
To assume that PDFs evolve as given by perturbation theory in a region where the running
of αs(μ) is strongly affected by non-perturbative effects would in our view require some
motivation. In the present work, we use perturbation theory to evolve both the strong coupling
and Mellin moments to low scales with the aim to see what one obtains in such a scenario,
without strong claims that this is a valid approximation at a given scale μ. In doing so, we
follow the procedure adopted in many works that connect quark models at low scale with
PDFs (see the papers cited in the introduction). By comparing perturbative results at three
different orders, we will in fact get some indication of how stable the perturbative expansion
is at a given scale for the quantities we are interested in.

Another caveat concerns the renormalisation scheme used to define PDFs and αs. We will
use the MS scheme throughout this work. This choice is dictated by practical considerations,
as it is in this scheme that the DGLAP splitting functions are available up to NNLO. The
strength of this scheme is its suitability for higher-order perturbative computations, but as
a downside it does not readily offer an intuitive interpretation of renormalised quantities.
One might think of other schemes for defining PDFs, e.g. the DIS scheme, but this will not
be pursued in the present work. (Notice that, whilst quark and antiquark densities have a
rather straightforward physical meaning in that scheme, the same is not true for the gluon
distribution.) We note that PDFs and the running coupling at LO play a special role in this
context, since they are the same in a large class of renormalisation schemes. Returning to the
discussion in the previous paragraph, one might ideally want to define a scheme that allows
for a physical interpretation of PDFs and that can be used in a non-perturbative setting, but
such an endeavour is well beyond the scope of this work.

Finally, the very idea that antiquark or gluon distributions in a hadron are zero at a certain
scaleμc is somewhat problematic regarding their physical interpretation. This is because these
distributions will then typically become negative at scales just below μc, at least in some x
range. We will see this happen at the level of their Mellin moments. The interpretation of
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PDFs as probability densities is then lost at scales below μc. One may mitigate this problem
by considering a scale just above μc, where antiquark or gluon densities would be nonzero but
small (compared with their values at higher scales, or compared with the quark distributions
at the same scale).

3 Evolution of Mellin moments

Let us briefly recall how the Mellin moments of PDFs depend on the renormalisation scale.
Throughout this work, we consider distributions for nf = 3 active quark flavours and limit our
attention to the flavour singlet combinations of quark and antiquark distributions. One could
extend our study to individual quark flavours, investigating, for instance, whether moments
of the distribution s(x, μ) + s̄(x, μ) vanish at some low scale. In such a case, strangeness in
the proton would be generated by perturbative evolution. To pursue this is, however, beyond
the scope of this paper.

We define Mellin moments for flavour summed quark and antiquark distributions,

Q( j, μ) =
∑

q=u,d,s

∫ 1

0
dx x j−1 q(x, μ) , Q( j, μ) =

∑

q=u,d,s

∫ 1

0
dx x j−1 q̄(x, μ) (1)

and for the gluon distribution,

G( j, μ) =
∫ 1

0
dx x j−1 g(x, μ) , (2)

recalling that all quantities are renormalised in the MS scheme. The valence combination
Q − Q evolves as

d

d log μ2

[
Q( j, μ) − Q( j, μ)

] = γns( j, μ)
[
Q( j, μ) − Q( j, μ)

]
, (3)

where the non-singlet anomalous dimension γns( j, μ) depends on μ via the scale of αs. In
the singlet sector, we have the matrix equation

d

d log μ2

(
Q( j, μ) + Q( j, μ)

G( j, μ)

)
=

(
γqq( j, μ) γqg( j, μ)

γgq( j, μ) γgg( j, μ)

) (
Q( j, μ) + Q( j, μ)

G( j, μ)

)
. (4)

The anomalous dimensions have a perturbative expansion, which reads

γi ( j, μ) =
∞∑

k=0

(
αs(μ)

2π

)k+1

γ
(k)
i ( j) , with i ∈ {ns, qq, qg, gq, gg}. (5)

Using the renormalisation group equation dαs/d log μ2 = β(αs), we rewrite (3) and (4) as
evolution equations in the variable αs, which gives

d

dαs

[
Q( j, αs) − Q( j, αs)

] = γns( j, αs)

β(αs)

[
Q( j, αs) − Q( j, αs)

]
(6)

and an analogous equation for the singlet sector. We use the perturbative expansion of β(αs)

at the same order as for the anomalous dimensions and solve the equations numerically using
the classical four-step Runge–Kutta method. For brevity, we suppress the dependence of the
Mellin moments on μ (or on the corresponding value of αs) henceforth.

The non-singlet equation (6) can of course be solved analytically by straightforward
integration. The same holds for the singlet equation if j = 2, in which case G(2) can be
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eliminated by using the momentum sum rule Q(2)+Q(2)+G(2) = 1. We use these analytic
solutions as cross-checks of the numerical ones.

At odd values of j , the combination Q( j) − Q( j) of moments is connected with the
proton matrix elements of local twist-two operators, and the same holds for Q( j) + Q( j)
and for G( j) if j is even. In our study, we are, however, interested in the antiquark moments
Q( j) by themselves, which are not connected with local twist-two operators at any value of j .
Furthermore, for reasons discussed in Sect. 4.1, we will also consider non-integer values of j .
We obtain the anomalous dimensions needed in (3) and (4) by computing the relevant Mellin
moments of the DGLAP splitting functions. For the splitting functions up to NLO (k = 1),
we use the exact expressions given in [34], whereas for the NNLO (k = 2) splitting functions
we take the parametrisations given in [35,36], which approximate the exact kernels and have
a much simpler functional form. In both cases, the Mellin moments are easy to compute.
We cross-checked our results for the j = 2 anomalous dimensions in the singlet sector
against the analytic expressions given in [37]. For the NNLO coefficients, we also verified
the constraints

γ (2)
ns (1) = 0 , γ (2)

qq (2) + γ (2)
gq (2) = 0 , γ (2)

qg (2) + γ (2)
gg (2) = 0 (7)

from fermion number and momentum conservation for our numerical results and find them
to be satisfied within better than 2 × 10−3 for nf = 3. We take this as evidence that the
approximate forms of the NNLO splitting functions in [35,36] are sufficiently accurate for our
purposes. In Table 1, we give the numerical values of the perturbative expansion coefficients
in (5) as functions of nf .

We note that approximate expressions for the DGLAP splitting functions in the non-singlet
sector are available at N3LO [38]. Furthermore, the N3LO coefficients γ

(3)
i ( j) in the singlet

sector have been given in [39] for j = 2 and nf = 4. This is, however, not sufficient for
extending the expansion coefficients given in Table 1 to the next order, k = 3, and we limit
our present analysis to k ≤ 2.

4 Parton densities, their moments and the running coupling

We perform our study with a wide range of current PDF sets, which should reflect the current
knowledge and uncertainties of unpolarised parton densities.1 In Table 2, we list these sets
together with some of their characteristic parameters. In the first column, we give the full
name of a set in the LHAPDF library [40], from which we take the numerical values of all
PDFs. The second column shows the “short names” that will be used to refer to a given set
throughout this paper. A number of comments are in order.

• The 2018 Review of Particle Physics [1] gives αs(MZ ) = 0.1181 ± 0.0011 as world
average for the strong coupling at the Z mass, which corresponds to values from 0.1159
to 0.1203 at 2σ accuracy. To assess the impact of the αs value within a single PDF fitting
approach, we take the NNLO sets of NNPDF [41] for αs(MZ ) = 0.116, 0.118, 0.120.
We note that the value αs(MZ ) = 0.11471 in the ABMP set [42] is even smaller.

• As starting scale for evolution, we take μ0 = 1.3 GeV for all PDF sets. At this scale, all
sets using a variable flavour number scheme have nf = 3 active quarks. The charm quark
mass mc in the ABMP set is smaller than μ0, but this set uses the fixed flavour number
scheme with nf = 3.

1 Updates to some of the PDF sets used here have been presented at the DIS 2019 Workshop, see https://
indico.cern.ch/event/749003.
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Table 1 Coefficients in expansion (5) of anomalous dimensions at NkLO for the moment indices j considered
in this work

γ
(k)
ns ( j) k

j 0 1 2

1.5 − 1.0588 − 7.6282 + 0.4513 nf − 67.070 + 8.8140 nf + 0.0986 n2
f

2 − 1.7778 − 12.0656 + 0.7901 nf − 106.024 + 15.7285 nf + 0.1536 n2
f

2.5 − 2.3286 − 15.2318 + 1.0584 nf − 133.808 + 20.7085 nf + 0.1914 n2
f

3 − 2.7778 − 17.7212 + 1.2809 nf − 155.615 + 24.5589 nf + 0.2203 n2
f

γ
(k)
qq ( j) k

j 0 1 2

1.5 − 1.0588 − 7.6880 + 2.5188 nf − 70.245 + 35.6085 nf + 1.0777 n2
f

2 − 1.7778 − 12.0823 + 1.2840 nf − 107.431 + 21.9562 nf + 0.5844 n2
f

2.5 − 2.3286 − 15.2376 + 1.2431 nf − 134.568 + 23.5801 nf + 0.4386 n2
f

3 − 2.7778 − 17.7236 + 1.3667 nf − 156.081 + 26.2653 nf + 0.3816 n2
f

γ
(k)
qg ( j) k

j 0 1 2

1.5 0.4381 nf 6.2109 nf 42.1828 nf − 1.8462 n2
f

2 0.3333 nf 1.8858 nf 4.7030 nf − 1.5140 n2
f

2.5 0.2730 nf 0.7182 nf −1.0327 nf − 1.2458 n2
f

3 0.2333 nf 0.1840 nf −2.9878 nf − 1.0421 n2
f

γ
(k)
gq ( j) k

j 0 1 2

1.5 4.0889 21.6219 − 3.6367 nf 120.262 − 58.7094 nf − 1.0024 n2
f

2 1.7778 12.0823 − 1.2840 nf 107.431 − 21.9562 nf − 0.5844 n2
f

2.5 1.0920 8.2191 − 0.6455 nf 76.642 − 12.7228 nf − 0.4180 n2
f

3 0.7778 6.1566 − 0.3765 nf 58.582 − 8.6419 nf − 0.3259 n2
f

γ
(k)
gg ( j) k

j 0 1 2

1.5 6.5035 − 0.3333 nf 22.2636 − 8.6903 nf 62.257 − 72.4896 nf + 1.8677 n2
f

2 − 0.3333 nf −1.8858 nf − 4.7029 nf + 1.5141 n2
f

2.5 − 2.6013 − 0.3333 nf − 12.4630 + 0.5230 nf − 98.005 + 18.6109 nf + 1.3748 n2
f

3 − 4.2000 − 0.3333 nf − 20.8255 + 1.8512 nf − 165.957 + 32.5239 nf + 1.3219 n2
f

• The default PDF set in the NNPDF study [41] has an intrinsic charm distribution and is
hence not available for nf = 3. Evolving a nf = 4 set down to low scales makes little
physical sense. We therefore take the “perturbative charm” variant of that study, in which
charm distributions are generated by evolution, as is the case for all other PDF sets in
our study.
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Fig. 1 Fractional contribution of different x intervals to selected Mellin moments. In some cases, the very
small x or the large x region gives a negative contribution, indicating that the corresponding PDFs cannot be
interpreted as number densities in that region. The PDF sets are grouped according to their perturbative order
(LO 1–4, NLO 5–10, NNLO 11–19)

• In the tradition of PDF fits by the Dortmund group, the JR study [8] takes an initial
condition at very low scale, namely at Q2

0 = 0.8 GeV2. Such an approach is of obvious
interest in the context of our study. To assess its impact on the moments of PDFs, we
also include the set with a more conventional starting scale of Q2

0 = 2.0 GeV2 from the
same study. We refer to the respective sets as “JR 08” and “JR 20”.

• We include PDF sets from CJ [43], because that study pays particular attention to the
region of large x . We find that the PDF error bands for these PDFs, as given by the
LHAPDF interface, are considerably smaller than those of any other set we studied. We
have not investigated the reasons for this and decided not to show the corresponding sets
in our plots. We will, however, include the CJ15 sets in our discussion later on.

• The LO set of CT [44], as implemented in LHAPDF, does not give any PDF uncertainties,
and we therefore exclude it from our study.
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Table 3 Fractional contribution of different x intervals to Mellin moments of PDFs. Numbers are rounded
to multiples of 5% and are indicative for all sets considered in our study. A blank entry indicates a negligible
contribution. Not included in this compilation are the following antiquark moments from NNPDF (which have
relatively large errors): for the LO set, the region x > 0.5 contributes about 20% to j = 2.5 and 30% to j = 3,
whereas the NLO and NNLO sets give negative contributions from the same region to j = 3 (about − 10%
for NLO and − 5% for NNLO)

Moment j x < 10−4 10−4 < x < 0.1 0.1 < x < 0.5 x > 0.5

G 1.5 −10 to 10% 70–80% < 30%

2 40–60% 40–60% Few%

2.5 20–40% 60–70% < 15%

3 < 15% 70–80% < 25%

Q 1.5 < 10% ∼ 70% < 20%

2 ∼ 60% ∼ 40%

2.5 ∼ 40% ∼ 60% Few %

3 ∼ 20% ∼ 80% Few %

Q 1.5 Few % ∼ 40% ∼ 55% ∼ 5%

2 ∼ 20% ∼ 65% ∼ 15%

2.5 ∼ 10% ∼ 70% ∼ 20%

3 Few % ∼ 65% ∼ 30%

4.1 PDF moments and x ranges

We consider a collection of moments, from j = 1.5 to j = 3 in steps of 0.5, in order to be
sensitive to PDFs in a wide range of momentum fractions x . To quantify this sensitivity, we
divide the x range into four intervals,

x < 10−4 , 10−4 < x < 0.1 , 0.1 < x < 0.5 , 0.5 < x , (8)

to which we, respectively, refer as “very small x region”, “small x region”, “valence region”,
and “large x region” in the sequel. We then take the PDFs at the starting scale μ0 of our
study and determine the contribution of these different x intervals to each Mellin moment.
The result is shown for selected moments in Fig. 1 and summarised in Table 3.

Notice that the gluon moments have the strongest variation between different sets, with
less variation for antiquarks and even less for quarks. We see that G(2) and Q(2) receive
comparable contributions from the small x region and the valence region. To have quantities
that are dominated by the small x region, we resort to non-integer moments with j = 1.5.
(The next smallest integer j = 1 is not an option, because the corresponding Mellin integrals
are in general divergent for G, Q̄, and Q.) We note that the very small x region, in which
fitted PDFs are essentially unconstrained by data, plays only a minor role in all moments
we consider. The high moments with j = 2.5 and j = 3 are increasingly dominated by
the valence region. The region of large x , where gluon and antiquark distributions are again
poorly known, plays only a minor role in the G and Q moments. To summarise, we find
that at our starting scale μ0 = 1.3 GeV, the Mellin moments we consider offer a reasonably
differential sensitivity to the region 10−4 < x < 0.5, in which PDFs are reasonably well
known. Moments with lower or higher j will be more strongly affected by PDF uncertainties.
When going to lower scales, one should keep in mind that the PDFs are in general shifted
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towards higher x values by backward evolution. The relative importance of the different x
regions for a given j will then change.

We note that for some PDF sets, the gluon distribution at μ0 = 1.3 GeV becomes negative
at very small x . Some sets have a zero crossing of g(x, μ0) at x below 10−4. For other sets
(such as HERAPDF NNLO and MMHT NNLO), the zero crossing occurs already for x
below 10−3, and we see in Fig. 1 that the very small x region gives a negative contribution
to the lowest moment G(1.5). Such a behaviour is a clear indicator that the corresponding
PDFs no longer admit a probability interpretation in the corresponding region.

When computing Mellin moments, we truncate the integral over x at the smallest value
xmin for which LHAPDF provides PDF values for a given set, thus avoiding an extrapolation
of parton densities down to x = 0. The values of xmin are given in the last column of Table 2
and range from 10−9 to 10−6. To obtain a conservative estimate of the uncertainty on the
moments due to this truncation, we recompute them with a lower integration limit of 10 xmin

instead of xmin. The resulting change is less than 0.1% for all moments with j ≥ 2. For the
j = 1.5 moments, it is less than 3% with the following exceptions. The antiquark moment
Q(1.5) of the NNPDF LO set changes by 4%, which is negligible compared with the huge
error on this moment due to the PDF uncertainty at x > xmin. The gluon moment G(1.5)

changes by 5% for HERAPDF NNLO and by 4%, 8%, and 7% for the MMHT sets at LO,
NLO, and NNLO, respectively. Our conclusions in Sect. 5 are not affected by these somewhat
larger truncation uncertainties.

When evolving the Mellin moments to lower scales, we use anomalous dimensions at
fixed order in perturbation theory. One may wonder whether some type of all-order resum-
mation would improve perturbative convergence. We argue that this is not the case: small-x
logarithms αs log(x) correspond to powers of αs/j in Mellin space and hence do not require
resummation for j > 1. Large-x logarithms, which correspond to powers of αs log2 j [47,48],
do not appear in anomalous dimensions for the evolution of parton densities [35,36,49], and
in any event, log j is not large for j ≤ 3.

4.2 The running coupling

Let us take a brief look at the running coupling αs(μ). In Fig. 2a, we show the evolution of
αs(μ) down to low scales at different orders in the perturbative expansion of β(αs), which
is available up to five-loop order [50], i.e. up to N4LO. For definiteness, we take in this
plot a common value αs(1.3 GeV) = 0.378 for all orders. (This is the value of the CT
NNLO set as seen in Table 2.) The plot looks very similar if instead one takes a common
value αs(MZ ) = 0.118 for all orders and sequentially evolves and matches the coupling from
nf = 5 down to nf = 3. We observe that down to about μ ∼ 0.7 GeV, the difference between
different orders is small and decreases with the order, indicating satisfactory convergence of
the perturbative expansion. For lower scales, however, the different orders differ more and
more strongly.

In Fig. 2b, we show the running of αs(μ) at NNLO with starting values at μ0 = 1.3 GeV
corresponding to those in different PDF sets. We see that the moderate spread in αs values at
μ0 rapidly increases when evolving to lower scales.

5 Evolution to low scales

We have now everything in place to investigate the evolution of Mellin moments for different
j from their starting values at μ0 = 1.3 GeV down to small scales. We focus on the moments
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Fig. 2 a The running coupling for nf = 3 at different perturbative orders. A common value αs(1.3 GeV) =
0.378 has been assumed. b The running coupling for nf = 3 corresponding to the values of αs(1.3 GeV)

taken in different NNLO parton sets. As follows from Table 2, the curves for the remaining NNLO sets of our
study are in between those shown in the plot

G( j) and Q( j). As a function of μ, PDF moments exhibit a very steep behaviour at scales
where αs(μ) starts to diverge, as is seen in Fig. 6. To display the low-scale behaviour of the
moments in a clearer way, we will in general plot them as functions of αs instead of μ.

We remark that the lowest moments G(1.5) and Q(1.5) are consistent with zero within
huge errors for three sets, namely for NNPDF LO, CT NLO, and CT NNLO. This already
holds at μ0 and reflects the huge uncertainties of the antiquark and gluon distributions at
low x in these sets. Evolving G(1.5) and Q(1.5) to yet lower scales then gives no further
useful information. For simplicity, we will not explicitly mention these cases in the following
discussion.

5.1 Comparison of different orders

If we study PDF moments as functions of αs, then the quantity that drives their evolution
is γi (αs)/β(αs) according to Eq. (6) and its analogue for the singlet channel. In Fig. 3, we
show this quantity for the three perturbative orders considered in our study, multiplied with
an additional power of αs so that the LO curves are constants. The channels and moment
indices j shown in the figure are representative of the wide range of patterns we observe. In
some cases, there are only moderate differences between different orders, in other cases the
difference between LO and NNLO amounts to a factor around two at the highest αs shown
in the figure, and in yet other cases one finds that the NNLO curve changes sign at some
intermediate value of αs. Let us emphasise that by showing the curves up to αs = 3, we do
not mean to imply that perturbation theory is valid up to that value. Indeed, both Figs. 2 and
3 suggest that for the quantities we are studying here, perturbation theory breaks down well
before that value of αs is reached.

To assess the difference in the evolution behaviour of Mellin moments at different orders,
we focus on those sets that provide PDFs at all three orders, i.e. on HERAPDF, MMHT and
NNPDF (see Table 2). A selection of moments for the HERAPDF sets is shown in Fig. 4.
For G( j) with j ≥ 2, we find the NLO and NNLO moments to be rather close to each other,
whilst the LO moments are clearly different from these at large αs. For G(1.5), all orders
differ quite noticeably. The situation is similar for MMHT and NNPDF. For the antiquark
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Fig. 3 Plots of αsγi ( j, αs)/β(αs) at different perturbative orders for selected anomalous dimensions

moments, we find in general larger differences between different orders, with a pattern that
depends on j and also on the considered PDF set. This stronger dependence on the initial
conditions is perhaps not surprising, given that Q is the difference between the combinations
(Q + Q)/2 and (Q − Q)/2, which evolve independently of each other. We note that the
width of the error bands for the moments increases with αs, but in most cases it does so rather
slowly. The same is observed for the other PDF sets and is consistent with the numerical
stability of backward evolution for Mellin moments.
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Fig. 4 Comparison of moments computed for the HERAPDF sets at different perturbative orders

5.2 Comparison of different PDF sets

We now discuss how given Mellin moments compare between different sets. In addition to
the parametric PDF errors provided by each set, the difference between sets may be taken as
an indication of how well a given Mellin moment is known. The situation is shown in Fig. 5
for j = 2 at LO and in Fig. 6 for j = 3 at all orders. In this case, we plot moments against μ

rather than αs, because different PDFs sets have different values of αs(μ) at a given scale μ.
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Fig. 5 Comparison of j = 2 moments for gluons and antiquarks in the LO sets. The lowest value of μ shown
corresponds to αs(μ) = 3

Starting with the LO sets, we find that G( j) evolves to a zero value and then becomes neg-
ative for j = 1.5 and 2. For j = 2.5, it either increases or decreases with αs, depending on the
set, and for j = 3 it increases or remains flat. The moments Q( j) with j = 1.5 and 2 increase
with αs. For j = 2.5 and 3, the antiquark moments evolve to zero for MMHT, whereas for
HERAPDF and NNPDF they decrease only slightly or remain flat. The behaviour of Q(2)

and G(3) in Figs. 5b and 6a alone implies that there is no LO set in which either the gluon
or the flavour sum of antiquark distributions evolves to zero at some low scale. This remains
true if we include the CJ LO set in our considerations. (See our remark on that set in Sect. 4.)

Moving on to the NLO sets, we find that G( j) has a zero crossing for j = 1.5 and 2 in all
sets, whereas for j = 2.5 and j = 3 this only happens for some of the sets. As was the case
for LO, the moments Q( j) with j = 1.5 and 2 increase with αs. We find no zero crossings
for Q(2.5), whereas in some PDF sets the error bands of Q(3) just touch zero at the lowest
scales, as seen in Fig. 6d. None of the NLO sets is hence compatible with the flavour sum of
antiquark distributions vanishing at low scales.

Turning to the NNLO sets, we observe that in all sets all moments G( j) decrease with αs,
either crossing zero, or coming close to zero, or being consistent with zero within their error
bands. The antiquark moments with j = 1.5, 2, and 2.5 decrease with αs, with some of them
going down to zero and others not. For the moment Q(3), only HERAPDF is consistent with
zero at very low scale, whilst the other sets are not, as seen in Fig. 6f. Whether any NNLO
set admits the gluon or antiquark distributions to evolve to zero is investigated more closely
in the next subsection.

5.3 Vanishing gluon or antiquark moments

If g(x, μ) or the sum ū(x, μ) + d̄(x, μ) + s̄(x, μ) is zero at some scale μ, then all Mellin
moments of these distributions must vanish at that scale, or equivalently at the corresponding
value of αs(μ). In order to test this hypothesis, we compare the different moments G( j, αs)

and Q( j, αs) for each PDF set in turn.
Starting with the gluon, we see in Fig. 7 that for ABMP, JR NNLO 08, and HERAPDF

NNLO, all moments G( j) have a zero crossing but are never consistent with zero at the same
value of αs. In particular, the lowest moment G(1.5) has already evolved to negative values
at αs values where the higher moments become zero, so that g(x) must be negative in some
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Fig. 6 Comparison of j = 3 moments for gluons and antiquarks between different PDF sets. In panels e and
f, we have omitted the sets JR NNLO 20, NNPDF NNLO 116, and NNPDF NNLO 120 for the sake of clarity;
their values lie in between the values of other sets

x range. The situation is similar for HERAPDF NLO, for all JR sets, and for NNPDF NNLO
116. In the 118 and 120 variants of NNPDF NNLO, the gluon moments with j ≥ 2 have
zero crossings at well-separated αs values, whilst G(1.5) is consistent with zero over a large
αs range, as is shown in Fig. 7d for the 118 set. In all other PDF sets (including CJ), we find
that G(3) stays positive. (For MMHT NNLO, the error band just touches zero at αs ≈ 3.) We
thus find no set that is compatible with a vanishing (or very small) gluon distribution at low
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Fig. 7 Comparison of gluon moments with different j for selected PDF sets. Each moment is normalised to
its value at the input scale μ0 = 1.3 GeV

scales. We recall from Sect. 4.1 that for some PDF sets, the truncation uncertainty on G(1.5)

at the starting scale is not negligible. This does not weaken the conclusion just stated, which
for the sets in question already follows from the three moments G( j) with j ≥ 2.

Let us also note that for some scale below μ = 0.8 GeV (for NNLO) or 0.7 GeV (for
NLO and LO), we find either that G(1.5) has a zero crossing whilst all higher moments are
positive, or that G(1.5) can have either sign within its errors. In the latter case, which happens
for NNPDF LO, NNPDF NNLO 118 and 120, and CT NLO, no strong conclusions can be
drawn. The former case indicates that g(x) is negative at low x and positive at high x , which
implies that its probability interpretation is lost.

We now turn to antiquarks and note that, in general, a moment Q( j) is positive at the scale
where G( j) with the same j has a zero crossing. To find zeroes of Q( j), one thus has to go
to yet lower scales. The only set in which all antiquark moments are consistent with zero at
the same scale is HERAPDF NNLO, as shown in Fig. 8a. However, this happens at αs values
above 2.8 (corresponding to μ ≈ 0.51 GeV). At these αs values, all gluon moments of the
same set are negative, as seen in Fig. 7c. The probability interpretation of PDFs is therefore
lost at these low scales, and the PDF set is not consistent with a scenario in which at some
scale antiquark distributions vanish whilst gluon and quark distributions are positive.

In all other PDF sets, there is at least one moment Q( j) that remains significantly different
from zero over the full αs range we consider. For the NNLO sets other than HERAPDF, this
is the j = 3 moment, whereas for the NLO and LO sets (including CJ) it is the moment with
j = 2. For some sets, all antiquark moments remain positive, as in the example of Fig. 8b.
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Fig. 8 Comparison of antiquark moments with different j for selected PDF sets. Each moment is normalised
to its value at the input scale μ0 = 1.3 GeV

6 Conclusions

In this work, we investigate the possibility that the gluon or the antiquark PDFs in the proton
go to zero when evolved to low scales, using the DGLAP equations with splitting functions
computed in perturbation theory. To do so, we take a variety of current PDF sets and compute
Mellin moments of PDFs for j = 1.5, 2, 2.5, and 3 at a reference scale μ0 = 1.3 GeV. We
then evolve these moments down to lower scales, stopping at the point where αs(μ) = 3.
Our comparison of these moments at LO, NLO, and NNLO indicates that perturbation theory
ceases to converge at much lower values of αs, so that considering even larger values would
make little sense.

In several NLO and NNLO PDF sets, the gluon moments for all considered j go to zero
under evolution, but they do so at different scales μ. No PDF set is found to be compatible
with the gluon PDF vanishing at any scale. We note that the j = 1.5 moment eventually
evolves to negative values in almost all sets at some scale μ below 0.8 GeV, which indicates
that g(x) < 0 at low x and hence cannot be interpreted as a probability density.

For antiquarks, we take the flavour sum ū(x) + d̄(x) + s̄(x) and find that at least some
of its Mellin moments remain positive up to the largest αs we consider. An exception to this
is the HERAPDF NNLO set, for which all antiquark moments congregate around zero for
αs � 2.8. At these scales, however, the gluon density in the same set has negative Mellin
moments, so that we cannot interpret the PDFs as densities.

Our findings are fully consistent with those of the Dortmund group [5–8], who con-
cluded from their fits that PDFs that describe high-energy scattering data cannot be generated
by perturbative radiation from an input that involves only valence quark densities at some
low momentum scale. We think that our study is a valuable complement to the Dortmund
approach, in particular, because we use the results of a broad array of PDF fits, which differ in
their data selection, parametrisation of PDFs, as well as the details of the theory description
of hard cross sections.

Which scenarios does this situation leave for connecting the PDFs determined from data at
high scales with PDFs computed in models at low scales? We see several obvious possibilities.
The least dramatic one would be to consider PDFs defined in a perturbative renormalisation
scheme other than MS and to identify these PDFs with the results of low-energy computations.
Perhaps more plausible is that the evolution of PDFs is modified by non-perturbative effects
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at low scales, as has been argued for the case of the running coupling [30]. This is also
suggested by our comparison of Mellin moments evolved at different orders, and by the
study [28] of evolution in the polarised parton sector. Finally, it may well be that even at the
lowest scales one can sensibly consider, the parton content of the proton is not limited to just
“valence quarks” but involves antiquarks or gluons or both, as several low-energy models
suggest.

6.1 Note added in proof

After this work was completed, we were made aware of the paper [51]. Using PDF sets
available at the time, that study evolved PDFs in x space down to low scales. In particular,
parton distributions were found to become negative below μ ∼ 600 MeV. The qualitative
conclusions of [51] agree with those of our work, disfavouring the idea that PDFs at high
scales can be obtained from DGLAP evolution of PDFs computed in quark models.
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42. S. Alekhin, J. Blümlein, S. Moch, R. Plačakytė, Parton distribution functions, αs , and heavy-quark masses
for LHC Run II. Phys. Rev. D 96, 014011 (2017), arXiv:1701.05838

123

http://arxiv.org/abs/hep-ph/9708262
http://arxiv.org/abs/hep-ph/0409059
http://arxiv.org/abs/hep-ph/9702367
http://arxiv.org/abs/1309.5814
http://arxiv.org/abs/1610.03333
http://arxiv.org/abs/1701.07839
http://arxiv.org/abs/hep-ph/9507218
http://arxiv.org/abs/hep-ph/0308191
http://arxiv.org/abs/hep-ph/9606314
http://arxiv.org/abs/hep-ph/9703420
http://arxiv.org/abs/hep-ph/9810270
http://arxiv.org/abs/0803.2775
http://arxiv.org/abs/1012.4409
http://arxiv.org/abs/1902.04636
http://arxiv.org/abs/1604.08082
http://arxiv.org/abs/1607.06423
http://arxiv.org/abs/1706.03821
http://arxiv.org/abs/1902.08148
http://arxiv.org/abs/hep-ph/0403192
http://arxiv.org/abs/hep-ph/0404111
http://arxiv.org/abs/hep-ph/9605317
http://arxiv.org/abs/1707.08315
http://arxiv.org/abs/1808.08981
http://arxiv.org/abs/1412.7420
http://arxiv.org/abs/1706.00428
http://arxiv.org/abs/1701.05838


211 Page 20 of 20 Eur. Phys. J. Plus (2020) 135:211

43. A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-x parton distributions
from new weak boson production and deep-inelastic scattering data. Phys. Rev. D 93, 114017 (2016),
arXiv:1602.03154

44. S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky et al., New parton distribution functions
from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016), arXiv:1506.07443

45. ZEUS and H1 Collaborations, H. Abramowicz et al., Combination of measurements of inclusive deep
inelastic e± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C75, 580 (2015),
arXiv:1506.06042

46. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT
2014 PDFs. Eur. Phys. J. C 75, 204 (2015), arXiv:1412.3989

47. G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections. Nucl. Phys. B
281, 310 (1987)

48. S. Catani, L. Trentadue, Resummation of the QCD perturbative series for hard processes. Nucl. Phys. B
327, 323 (1989)

49. G.P. Korchemsky, Asymptotics of the Altarelli–Parisi–Lipatov Evolution Kernels of parton distributions.
Mod. Phys. Lett. A 4, 1257 (1989)

50. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop running of the QCD coupling constant. Phys. Rev.
Lett. 118, 082002 (2017), arXiv:1606.08659

51. E. Ruiz Arriola, NLO evolution for large scale distances, positivity constraints and the low-energy model
of the nucleon. Nucl. Phys. A 641, 461 (1998)

123

http://arxiv.org/abs/1602.03154
http://arxiv.org/abs/1506.07443
http://arxiv.org/abs/1506.06042
http://arxiv.org/abs/1412.3989
http://arxiv.org/abs/1606.08659

	Gluons and sea quarks in the proton at low scales
	Abstract
	1 Introduction
	2 Caveats
	3 Evolution of Mellin moments
	4 Parton densities, their moments and the running coupling
	4.1 PDF moments and x ranges
	4.2 The running coupling

	5 Evolution to low scales
	5.1 Comparison of different orders
	5.2 Comparison of different PDF sets
	5.3 Vanishing gluon or antiquark moments

	6 Conclusions
	6.1 Note added in proof

	Acknowledgements
	References




