Skip to main content
Log in

On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study deals with the extended version of Yamada–Ota and Xue models of hybrid nanofluid on the moving needle surface. Here, we have examined the hybrid nanofluid flow of magnetic hydrodynamics and thermal slip over a thin moving needle. We also take the assumption of the variable thermal conductivity and viscosity of hybrid nanomaterial fluid. Two kinds of nanoparticles, namely \( {\text{SWCNT}} \) and \( {\text{MWCNT}} \), with pure water as base fluid are considered. A mathematical model has been developed under the assumption of hybrid nanofluid flow over the moving needle surface. The system of governing partial differential equations is converted into a system of nondimensional ordinary differential equations by applying the suitable similarity transformation. Dimensionless system is elucidated numerically by software built in technique bvp4c. The effects of the governing parameters are emphasized by graphs and tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.W. Moore, The boundary layer on a spherical gas bubble. J. Fluid Mech. 16(2), 161–176 (1963)

    Article  MathSciNet  Google Scholar 

  2. M.J. Lighthill, L. Rosenhead, Laminar boundary layers (Clarendon Press, Oxford, 1963)

    Google Scholar 

  3. K. Stewartson, The theory of laminar boundary layers in compressible fluids (Clarendon Press, Oxford, 1964)

    Book  Google Scholar 

  4. L.L. Lee, Boundary layer over a thin needle. Phys. Fluids 10(4), 820–822 (1967)

    Article  MathSciNet  Google Scholar 

  5. J.P. Narain, M.S. Uberoi, Forced heat transfer over thin needles. J. Heat Transf. 94(2), 240–242 (1972)

    Article  Google Scholar 

  6. A. Ishak, R. Nazar, I. Pop, Boundary layer flow over a continuously moving thin needle in a parallel free stream. Chin. Phys. Lett. 24(10), 2895 (2007)

    Article  Google Scholar 

  7. T. Grosan, I. Pop, Forced convection boundary layer flow past nonisothermal thin needles in nanofluids. J. Heat Transf. 133(5), 054503 (2011)

    Article  Google Scholar 

  8. R. Trimbitas, T. Grosan, I. Pop, Mixed convection boundary layer flow along vertical thin needles in nanofluids. Int. J. Numer. Meth. Heat Fluid Flow 24(3), 579–594 (2014)

    Article  MathSciNet  Google Scholar 

  9. R. Ahmad, M. Mustafa, S. Hina, Buongiorno’s model for fluid flow around a moving thin needle in a flowing nanofluid: a numerical study. Chin. J. Phys. 55(4), 1264–1274 (2017)

    Article  Google Scholar 

  10. M.I. Afridi, I. Tlili, M. Qasim, I. Khan, Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle. Bound. Value Probl. 2018(1), 148 (2018)

    Article  MathSciNet  Google Scholar 

  11. S. Salleh, N. Bachok, N. Arifin, F. Ali, I. Pop, Stability analysis of mixed convection flow towards a moving thin needle in nanofluid. Appl. Sci. 8(6), 842 (2018)

    Article  Google Scholar 

  12. C.S.K. Raju, S. Saleem, S.U. Mamatha, I. Hussain, Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model. Int. J. Therm. Sci. 132, 309–315 (2018)

    Article  Google Scholar 

  13. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)

    Article  Google Scholar 

  14. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A 388(1–3), 41–48 (2011)

    Article  Google Scholar 

  15. B. Takabi, H. Shokouhmand, Effects of Al2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int. J. Mod. Phys. C 26(04), 1550047 (2015)

    Article  Google Scholar 

  16. K. Vajravelu, K.V. Prasad, N.G. Chiu-On, The effect of variable viscosity on the flow and heat transfer of a viscous Ag–water and Cu–water nanofluids. J. Hydrodyn. Ser. B 25(1), 1–9 (2013)

    Article  Google Scholar 

  17. S. Nadeem, N. Abbas, A.U. Khan, Characteristics of three dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)

    Article  Google Scholar 

  18. S. Nadeem, N. Abbas, On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Can. J. Phys. 97, 392–399 (2018)

    Article  Google Scholar 

  19. S. Nadeem, N.S. Akbar, Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3844–3855 (2009)

    Article  Google Scholar 

  20. R. Ellahi, A. Riaz, Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math. Comput. Model. 52(9–10), 1783–1793 (2010)

    Article  MathSciNet  Google Scholar 

  21. A. Hussain, S. Akbar, L. Sarwar, S. Nadeem, Z. Iqbal, Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow. Heliyon 5(2), e01203 (2019)

    Article  Google Scholar 

  22. E. Yamada, T. Ota, Effective thermal conductivity of dispersed materials (Effektive Wärmeleitfähigkeit in dispersen Systemen). Wärme-und Stoffübertragung 13(1–2), 27–37 (1980)

    Article  Google Scholar 

  23. Q.Z. Xue, Model for thermal conductivity of carbon nanotube-based composites. Nanotechnology 138, 302–307 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to King Khalid University, Abha 61413, Saudi Arabia, for providing administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nadeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, N., Malik, M.Y., Nadeem, S. et al. On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle. Eur. Phys. J. Plus 135, 145 (2020). https://doi.org/10.1140/epjp/s13360-020-00185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00185-2

Navigation