Skip to main content
Log in

Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime

The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In recent years, investigations of nanoscale heat transfer have been regarded as a critical challenge for thermal engineering applications. Therefore, improving the thermal conduction inside nanodevices is required to ensure the reliability of future-generation nanoelectronics. Owing to the fast improvement in the semiconductor industry, researchers have been strongly motivated to study interfacial phonon transport to reduce the self-heating mechanism caused by ballistic thermal conduction, which induces size-dependent effective thermal conductivity. Based on the phonon Boltzmann equation (BTE), we obtain the ballistic–diffusive equation and Cattaneo–Vernotte models to explain the heat conduction in multiple interfaces of silicon and silicon dioxide nanolayers. Both the temperature-jump boundary condition and thermal boundary resistance, also referred to as Kapitza resistance, can control the interfacial heat transport in the ballistic–diffusive regime. In the present study, our analytical models are compared with the phonon BTE to validate the performance of our methodology. We find that if the thermal boundary resistance reduces, the heat transport across the interfaces can be enhanced, which is necessary to limit the heat dissipation in silicon nanolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.D. Nie, B.Y. Cao, Reflection and refraction of a thermal wave at an ideal interface. Int. J. Heat Mass Transf. 116, 314–328 (2018)

    Google Scholar 

  2. D.H. Doh, M. Muthtamilselvan, B. Swathene, E. Ramya, Homogeneous and heterogeneous reaction in nanofluid flow due to a rotating disk of variable thickness using HAM. Math. Comput. Simul. 7, 220 (2019)

    Google Scholar 

  3. M. Muthtamilselvan, S. Sureshkumar, Convective heat transfer in a nanofluid-saturated porous cavity with the effects of various aspect ratios and thermal radiation. Phys. Chem. Liq. 55, 617–636 (2017)

    Google Scholar 

  4. R. Tabasum, R. Mehmood, O. Pourmehran, Velocity in mixed convective oblique transport of titanium oxide/water (nano-polymer) with temperature-dependent viscosity. Eur. Phys. J. Plus 133, 361 (2018)

    Google Scholar 

  5. K. Alaili, J. Ordonez-Miranda, Y. Ezzahri, Modulated heat conduction in a two-layer dielectric system with dynamical interface. J. Appl. Phys. 124(24), 245101 (2018)

    ADS  Google Scholar 

  6. Y. Guo, M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015)

    ADS  MathSciNet  Google Scholar 

  7. M. Nomura, J. Shiomi, T. Shiga, R. Anufriev, Thermal phonon engineering by tailored nanostructures. J. Appl. Phys. 57(8), 080101 (2018)

    Google Scholar 

  8. A. Ziabari, P. Torres, B. Vermeersh, Y. Xuan, X. Caroixà, A. Torelló, J.H. Bahk, Y.R. Koh, M. Parsa, P.D. Ye, F.X. Alvarez, A. Shakouri, Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 9, 255 (2018)

    ADS  Google Scholar 

  9. H. Zhang, H. Wang, S. Xiong, H. Han, S. Volz, Y. Ni, Multi-scale modeling of heat dissipation in 2D transistors based on phosphorene and silicene. J. Phys. Chem. C 122, 2641–2647 (2018)

    Google Scholar 

  10. M.H. Gazzah, B. Chouchen, A. Fargi, H. Belmabrouk, Electro-thermal modeling for InxGa1−xN/GaN based quantum well heterostructures. Mater. Sci. Semicond. Process. 93, 231–237 (2019)

    Google Scholar 

  11. L. Yang, Q. Zhang, Z. Cui, M. Gerboth, Y. Zhao, T.T. Xu, D.G. Walker, D. Li, Ballistic phonon penetration depth in amorphous silicon dioxide. Nano Lett. 17(12), 7218–7225 (2017)

    ADS  Google Scholar 

  12. P. Zhang, P. Yuan, X. Jiang et al., A theoretical review on interfacial thermal transport at the nanoscale. Small 14(2), 1702769 (2017)

    Google Scholar 

  13. N. Acharya, K. Das, P.K. Kundu, Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slandering stretching sheet using NDM. Eur. Phys. J. Plus 131, 303 (2016)

    Google Scholar 

  14. W. Chen, J. Yang, Z. Wei, C. Liu, K. Bi, D. Xu, D. Li, Y. Chen, Effects of interfacial roughness on phonon transport in bilayer silicon thin films. Phys. Rev. B 92, 134113 (2015)

    ADS  Google Scholar 

  15. H. Ali, B.S. Yilbas, Crossplane phonon transport and thermal boundary resistance across thin films pair. J. Thermophys. Heat Transf. 33, 1–15 (2018)

    Google Scholar 

  16. Y.C. Hua, B.Y. Cao, Slip boundary conditions in ballistic–diffusive heat transport in nanostructures. Nanoscale Microscale Thermophys. Eng. 21(3), 159–176 (2017)

    ADS  Google Scholar 

  17. D. Singh, X. Guo, A. Alexeenko, J.Y. Murthy, T.S. Fisher, Modeling of subcontinuum thermal transport across semiconductor-gas interfaces. J. Appl. Phys. 106, 024314 (2009)

    ADS  Google Scholar 

  18. M.F. Ben Aissa, H. Rezgui, F. Nasri, H. Belmabrouk, A.A. Guizani, Thermal transport in graphene field-effect transistors with ultrashort channel length. Superlatt. Microstruct. 128, 265–273 (2019)

    ADS  Google Scholar 

  19. M. Xu, A non-local constitutive model for nano-scale heat conduction. Int. J. Therm. Sci. 134, 594–600 (2018)

    Google Scholar 

  20. C. Yang, Q. Wang, A. Nakayama, T. Qiu, Effect of temperature jump on forced convective transport of nanofluids in the continuum flow and slip flow regimes. Chem. Eng. Sci. 137, 730–739 (2015)

    Google Scholar 

  21. H. Rezgui, F. Nasri, M.F. Ben Aissa, H. Belmabrouk, A.A. Guizani, Modeling thermal performance of nano-GNRFET transistor using ballistic–diffusive equation. IEEE Trans. Electron. Dev. 65(4), 1611–1616 (2018)

    ADS  Google Scholar 

  22. Y. Zhang, W. Ye, Modified ballistic–diffusive equations for transient non-continuum heat condition. Int. J. Heat Mass Transf. 83, 51–63 (2015)

    Google Scholar 

  23. M. Xu, H. Hu, A ballistic–diffusive heat conduction model extracted from Boltzmann transport equation. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 467, 1851–1864 (2011)

    MathSciNet  MATH  Google Scholar 

  24. S.L. Sobolev, Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux. Phys. Rev. E 97, 022122 (2018)

    ADS  Google Scholar 

  25. F. Nasri, M.F. Ben Aissa, H. Belmabrouk, Microscale thermal conduction based on Cattaneo–Vernotte model in silicon on insulator and Double Gate MOSFETs. App. Therm. Eng. 76, 206–211 (2015)

    Google Scholar 

  26. M.G. Hennessy, M. Calvo-Schwarzwälder, T.G. Myers, Modeling ultra-fast nanoparticle melting with the Maxwell–Cattaneo equation. App. Math. Mod. 69, 201–222 (2019)

    Google Scholar 

  27. P. Naphon, S. Wiriyasart, S. Wongwises, Thermal cooling enhancement techniques for electronic components. Int. Commun. Int. J. Heat Mass Transf. 61, 140–145 (2015)

    Google Scholar 

  28. R. Anufriev, M. Nomura, Phonon and heat transport control using pillar-based phononic crystals. Sci. Technol. Adv. Mater. 19(1), 863–870 (2018)

    Google Scholar 

  29. H. Bao, J. Chen, X. Gu, B.Y. Cao, A review of simulation methods in micro/nanoscale heat conduction. ES Energy Environ. 1, 16–55 (2018)

    Google Scholar 

  30. J. Ordonez-Miranda, R. Yang, S. Volz, J.J. Alvarado-Gill, Steady state and modulated heat conduction in layered systems predicted by the analytical solution of the phonon Boltzmann transport equation. J. Appl. Phys. 118(7), 075103 (2015)

    ADS  Google Scholar 

  31. B. Deng, A. Chernatynskiy, M. Khafizov, D.H. Hurley, S.R. Phillpot, Kapitza resistance of Si/SiO2 interface. J. Appl. Phys. 115(8), 084910 (2014)

    ADS  Google Scholar 

  32. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)

    ADS  Google Scholar 

  33. A. Sellitto, L. Carlomango, D. Jou, Two-dimensional phonon hydrodynamics in narrow strips. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 471, 2182 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Y.C. Hua, B.Y. Cao, An efficient two-step Monte Carlo method for heat conduction in nanostructure. J. Comput. Phys. 342, 253–266 (2017)

    ADS  MathSciNet  Google Scholar 

  35. R. Su, X. Zhang, Size effect of thermal conductivity in monolayer graphene. App. Therm. Eng. 144, 488–494 (2018)

    Google Scholar 

  36. S. Kwon, M.C. Wingert, J. Zheng, J. Xiang, R. Chen, Thermal transport in Si and Ge nanostructures in the ‘confinement’ regime. Nanoscale 8(27), 13155–13167 (2016)

    ADS  Google Scholar 

  37. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    ADS  Google Scholar 

  38. I. Carlomagno, A. Sellitto, D. Jou, Effective phonon mean-free path and slip heat flow in rarefied phonon hydrodynamics. Phys. Lett. A 379, 2652–2656 (2015)

    ADS  Google Scholar 

  39. H. Rezgui, F. Nasri, M.F. Ben Aissa, A.A. Guizani, Study of heat dissipation mechanism in nanoscale MOSFETs using BDE model, in Green Electronics, ed. by C. Ravariu (IntechOpen, New York, 2018)

    Google Scholar 

  40. J.B. Hertzberg, M. Aksit, O.O. Otelaja, D.A. Stewart, R.D. Robinson, Direct measurements of surface scattering in Si nanosheets using a microscale phonon spectrometer: implication for Casimir-limit. Nano Lett. 14(2), 403–415 (2014)

    ADS  Google Scholar 

  41. M.F. Ben Aissa, F. Nasri, H. Belmabrouk, Multidimensional nano heat conduction in cylindrical transistors. IEEE Trans. Electron. Dev. 64(12), 5236–5241 (2017)

    ADS  Google Scholar 

  42. C. Zhang, Z. Guo, S. Chen, Unified implicit kinetic scheme for steady multiscale heat based on the Boltzmann transport equation. Phys. Rev. E 96(6), 063311 (2017)

    ADS  MathSciNet  Google Scholar 

  43. K. Alaili, J. Ordonez-Miranda, Y. Ezzahri, Effective interface thermal resistance and thermal conductivity of dielectric nanolayers. Int. J. Therm. Sci. 131, 40–47 (2018)

    Google Scholar 

  44. G. Balasubramanian, I.K. Puri, Heat conduction across solid–solid interface: understanding nanoscale interfacial effects on thermal resistance. J. Phys. Lett. 99(1), 013116 (2011)

    ADS  Google Scholar 

  45. T. Feng, W.J. Yao, Z. Wang, J. Shi, C. Li, B.Y. Cao, X. Ruan, Spectral analysis of non-equilibrium molecular dynamics: spectral phonon temperature and phonon local non-equilibrium in thin films and across interfaces. Phys. Rev. B 95, 195202 (2017)

    ADS  Google Scholar 

  46. A.J.H. McGaughey, E.S. Landry, D.P. Sellan, C.H. Amon, Size-dependent model for thin film and nanowire thermal conductivity. J. Phys. Lett. 99(13), 131904 (2011)

    ADS  Google Scholar 

  47. A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transf. 115(1), 7–16 (1993)

    Google Scholar 

  48. M. Asheghi, Y.K. Leung, S.S. Wong, K.E. Goodson, Phonon–boundary scattering in thin silicon layers. App. Phys. Lett. 71(13), 1798–1800 (1997)

    ADS  Google Scholar 

  49. Y.S. Ju, Phonon heat transport in silicon nanostructure. App. Phys. Lett. 87(15), 153106 (2005)

    ADS  Google Scholar 

  50. S.S. Mahajan, G. Subbarayan, B.G. Sammakia, Estimating Kapitza resistance between Si–SiO2 interface using molecular dynamics simulations. IEEE Trans. Compon. 1(8), 1132–1139 (2011)

    Google Scholar 

  51. J. Chen, G. Zhang, B. Li, Thermal contact resistance across nanoscale silicon dioxide and silicon interface. Appl. Phys. Lett. 112, 064319 (2012)

    Google Scholar 

  52. M.J. Huang, H.B. Huang, The temperature distribution due to the ballistic–diffusive phonon transport. Int. J. Heat Mass Transf. 145, 118727 (2019)

    Google Scholar 

  53. C. Kim, M. Lee, J. Park, J.H. Seol, Measurement and analysis of ballistic–diffusive phonon transport in a constrained silicon film. App. Therm. Eng. 160, 114080 (2019)

    Google Scholar 

  54. V.D. Camiola, G. Mascali, V. Romano, An improved 2D–3D model for charge transport based on the maximum entropy principle. Contin. Mech. Thermodyn. 30, 1–23 (2018)

    ADS  MathSciNet  Google Scholar 

  55. W. Yu, Z. Duan, G. Zhang, C. Liu, S. Fan, The effect of auxiliary plate on passive heat dissipation of carbon nanotube-based materials. Nano Lett. 18(3), 1770–1776 (2018)

    ADS  Google Scholar 

  56. Y.K. Koh, A.S. Lyons, M.H. Bae, B. Huang, V.E. Dorgan, D.G. Cahill, E. Pop, Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO2 interfaces. Nano Lett. 16(10), 6014–6020 (2016)

    ADS  Google Scholar 

  57. M.Z. Iqbal, M.M. Faisal, Fowler–Nordheim tunneling characteristics of graphene/hBN/metal heterojunctions. J. Appl. Phys. 125(8), 084902 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project No. 38/67. The authors tremendously acknowledge the helpful comments from and discussions with Pr. Bing-Yang Cao and Dr. Nie Bendian from Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafedh Belmabrouk or Houssem Rezgui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmabrouk, H., Rezgui, H., Nasri, F. et al. Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime. Eur. Phys. J. Plus 135, 109 (2020). https://doi.org/10.1140/epjp/s13360-020-00180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00180-7

Navigation