Skip to main content
Log in

Compressibility effects on the Kelvin–Helmholtz and Rayleigh–Taylor instabilities between two immiscible fluids flowing through a porous medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We examine analytically the Kelvin–Helmholtz stability of two compressible superposed viscous fluids flowing through porous medium. The dispersion relationship is derived and evaluated for special cases adopting the normal mode procedure. The results have been compared with the statics (RTI) and incompressible cases. It is shown that the behaviour of KHI tends to RTI behaviour if the difference in the initial velocity of two fluids (U2 − U1) is small. For incompressible KHI, the kinematic viscosity induces stability. The permeability has also stabilizing role on the perturbation’s growth, but the growth rate increases as permeability increases. The porosity has destabilizing effect on KHI for the case of small values of porosity, while for large values, it has stabilizing effect. The compressibility parameters (the specific heats ratio and pressure at equilibrium state) have stabilizing role on KHI. The behaviour of normalized growth rate of a compressible KHI model with the porosity effect in most cases capitulates to effect of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. H.L.F. Helmholtz, On the discontinuous movements of fluids. Sitz.ber. Preuss. Akad. Wiss. Berl. Phil.-Hist. Kl 23, 215–228 (1868)

    Google Scholar 

  2. Kelvin Lord, Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871)

    Google Scholar 

  3. I.E. Alexander, Kelvin–Helmholtz instability in type-1 comet tails and associated phenomena. Space Sci. Rev. 25(1), 3–34 (1980)

    Google Scholar 

  4. A.P. Lobanov, J.A. Zensus, A cosmic double helix in the archetypical quasar 3C273. Science 294, 128–131 (2001)

    Google Scholar 

  5. D.J. Price, S. Rosswog, Producing ultrastrong magnetic fields in neutron star mergers. Science 312, 719–722 (2006)

    Google Scholar 

  6. A. Hasegawa et al., Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430, 755–758 (2004)

    Google Scholar 

  7. Amiya K. Sen, Effect of compressibility on Kelvin–Helmholtz instability in a plasma. Phys. Fluids 7, 1293–1298 (1964)

    Google Scholar 

  8. K.M. Srivastava, On the hydromagnetic Kelvin–Helmholtz instability between compressible fluids. Z. Naturforsch 29, 888–892 (1974)

    Google Scholar 

  9. Shivamogg K. Bhimsen, Kelvin–Helmholtz instability of a compressible plasma in a magnetic field. Appl. Sci. Res. 37(3–4), 291–299 (1981)

    Google Scholar 

  10. T.P. Ray, A. Ershkovicht, I: Kelvin-Helmholtz instabilities in a sheared compressible plasma. Mon. Not. R. Astron. Soc. 204, 821–831 (1983)

    Google Scholar 

  11. P. Zu-Yin, G.K. Margaret, Kelvin-Helmholtz instability at the magnetopause: solution for compressible plasmas. J. Geophys. Res.: Space Phys. 88(A2), 841–852 (1983)

    Google Scholar 

  12. Dina Prialnik, A. Eviatar, A.I. Ershkovich, The effect of plasma compressibility on the Kelvin-Helmholtz instability. J. Plasma Phys. 35(2), 209–218 (1986)

    Google Scholar 

  13. M.G. Gudkov, O.A. Troshichev, Kelvin–Helmholtz instability in a compressible plasma with a magnetic field and velocity shear. J. Atmos. Terr. Phys. 58(5), 613423 (1996)

    Google Scholar 

  14. Soler. R., Díaz A.J., Ballester J.L., Goossens M.: Kelvin–Helmholtz instability in partially ionized compressible plasmas. Astrophys. J., 749(2), article id. 163:12 (2012)

  15. M. Karimi, S.G. Sharath, Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows Phys. Rev. E 93, 041102(R) (2016)

    Google Scholar 

  16. A. Bejan, P. Vadâsz, D.G. Kroger, Energy and the Environment (Springer, Dordrecht, 1999)

    Google Scholar 

  17. Mujeebua M. Abdul, M.Z. Abdullaha, M.Z. Abu Bakarb, A.A. Mohamadc, M.K. Abdullaha, Applications of porous media combustion technology—A review. Appl. Energy 86(9), 1365–1375 (2009)

    Google Scholar 

  18. Kambiz Vafai, Porous media and its applications in science. Eng. Ind. AIP Conf. Proc. 1453, 1 (2012)

    Google Scholar 

  19. Kambiz Vafai, Handbook of Porous Media, 3rd edn. (Taylor and Francis Group, Routledge, 2015)

    Google Scholar 

  20. Ajay Mandal, Chemical flood enhanced oil recovery: a review. Int. J. Oil Gas Coal Technol. 9(3), 241 (2015)

    Google Scholar 

  21. H.P.G. Darcy, Les fontaines publiques de la ville de Dijon (Victor Dalmont, Paris, 1856)

    Google Scholar 

  22. P.G. Saffman, G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1242), 312–329 (1958)

    Google Scholar 

  23. R. Raghavan, S.S. Marsden, The stability of immiscible liquid layers in a porous medium. J. Fluid Mech. 48(1), 143–159 (1971)

    Google Scholar 

  24. R.C. Sharma, H. Singh, K.P. Thakur, Kelvin—Helmholtz instability through porous medium of two superposed plasmas. Acta Physica Academiae Seientiarum Hungarieae Tomus 48(1), 103–108 (1980)

    Google Scholar 

  25. M.F. El-Sayed, The effects of collisions with neutral particles on the instability of two superposed composite plasmas streaming through porous medium. Z. Naturforsch 54a, 411–416 (1999)

    Google Scholar 

  26. Sharma P. K.: Effect of magnetic field on the conducting fluids streaming in porous medium, International Conference on Recent Trends in Physics (ICRTP 2012) Journal of Physics: Conference Series 365: 012041 (2012)

  27. A. Samanta, R. Vinuesa, I. Lashgari, P. Schlatter, Enhanced secondary motion of the turbulent flow through a porous square duct. J. Fluid Mech. 784, 681–693 (2015)

    Google Scholar 

  28. D. Livescu, Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids. Phys. Fluids 16, 118–127 (2004)

    Google Scholar 

  29. G.A. Hoshoudy, Compressibility effects on the Rayleigh–Taylor instability growth between two immiscible fluids through Darcy porous media. J. Porous Media 17(3), 255–265 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Serge Gauthier for his valuable time for reading the manuscripts and providing valuable suggestions and his help to writing the paper, Dr. M. Elsayed (Department of Mathematics and Computer Science, Faculty of Science, South Valley University, Qena, Egypt) for assisting in the revising process. We would like also to thank the referees for their interest in this work and for their many constructive suggestions that improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Hoshoudy.

Appendix

Appendix

$$ \frac{{\rho^{(0)} }}{{\varepsilon^{2} }}\left( {\varepsilon \frac{{\partial u_{x}^{(1)} }}{\partial t} + u_{x}^{(0)} (y)\frac{{\partial u_{x}^{(1)} }}{\partial x} + u_{y}^{(1)} \frac{{\partial u_{x}^{(0)} (y)}}{\partial y}} \right) = - \frac{{\partial p^{(1)} }}{\partial x} - \frac{{\rho^{(0)} \nu_{0} }}{\rm K}u_{x}^{(1)} , $$
(25)
$$ \frac{{\rho^{(0)} }}{{\varepsilon^{2} }}\left( {\varepsilon \frac{{\partial u_{y}^{(1)} }}{\partial t} + u_{x}^{(0)} (y)\frac{{\partial u_{y}^{(1)} }}{\partial x}} \right) = - \frac{{\partial p^{(1)} }}{\partial y} - \frac{{\rho^{(0)} \nu_{0} }}{\rm K}u_{y}^{(1)} - \rho^{(1)} \,g, $$
(26)
$$ \frac{{\partial \rho^{(1)} }}{\partial t} = - \frac{1}{\varepsilon }\left\{ {\rho^{(0)} (y)\left( {\frac{{\partial u_{x}^{(1)} }}{\partial x} + \frac{{\partial u_{y}^{(1)} }}{\partial y}} \right) + u_{x}^{(0)} (y)\frac{{\partial \rho^{(1)} }}{\partial x} + u_{y}^{(1)} \frac{{\partial \rho^{(0)} (y)}}{\partial y}} \right\}, $$
(27)
$$ \frac{{\partial p^{(1)} }}{\partial t} = - \frac{1}{\varepsilon }\left\{ {\bar{\gamma }p^{(0)} (y)\left( {\frac{{\partial u_{x}^{(1)} }}{\partial x} + \frac{{\partial u_{y}^{(1)} }}{\partial y}} \right) + u_{x}^{(0)} (y)\frac{{\partial p^{(1)} }}{\partial x} + u_{y}^{(1)} \frac{{\partial p^{(0)} (y)}}{\partial y}} \right\}, $$
(28)
$$ \frac{{\partial p^{(0)} (y)}}{\partial y} = - \rho^{(0)} (y)g. $$
(29)
$$ \left\{ {\frac{{\rho^{(0)} \nu_{0} }}{\rm K} + \frac{{\rho^{(0)} }}{{\varepsilon^{2} }}\left( {\varepsilon n + iku_{x}^{(0)} (y)} \right)} \right\}u_{x}^{(1)} = - ikp^{(1)} - \frac{{\rho^{(0)} }}{{\varepsilon^{2} }}u_{y}^{(1)} (x,y,t)\frac{{\partial u_{x}^{(0)} (y)}}{\partial y}, $$
(30)
$$ \left\{ {\frac{{\rho^{(0)} \nu_{0} }}{\rm K} + \frac{{\rho^{(0)} }}{{\varepsilon^{2} }}\left( {\varepsilon n + iku_{x}^{(0)} (y)} \right)} \right\}u_{y}^{(1)} = - \frac{{\partial p^{(1)} }}{\partial y} - \rho_{1} g, $$
(31)
$$ \rho^{(1)} = - \frac{1}{{\varepsilon \,n + ik\,u_{x}^{(0)} (y)}}\left\{ {\rho^{(0)} (y)\left( {iku_{x}^{(1)} + \frac{{\partial u_{y}^{(1)} }}{\partial y}} \right) + u_{y}^{(1)} \frac{{\partial \rho^{(0)} (y)}}{\partial y}} \right\}, $$
(32)
$$ p^{(1)} = - \frac{1}{{\varepsilon n + iku_{x}^{(0)} (y)}}\left\{ {\bar{\gamma }p^{(0)} (y)\left( {iku_{x}^{(1)} + \frac{{\partial u_{y}^{(1)} }}{\partial y}} \right) - \rho^{(0)} (y)gu_{y}^{(1)} } \right\}. $$
(33)
$$ \lambda_{1} = \frac{{g\gamma_{1} }}{{2c_{1}^{2} }} + k\left[ \begin{aligned} &\left( {\frac{{g\gamma_{1} }}{{2kc_{1}^{2} }}} \right)^{2} + \frac{{\frac{{g^{2} }}{{c_{1}^{2} }}\left( {\gamma_{1} - 1} \right)}}{{\left\{ {\frac{{\nu_{01} }}{{k_{1} }} + \frac{1}{{\varepsilon_{1}^{2} }}\left( {\varepsilon_{1} n + ik\bar{U}_{1} } \right)} \right\}\left\{ {\varepsilon_{1} n + ik\bar{U}_{1} } \right\}}} \hfill \\&\quad + \left[ {\left\{ {\varepsilon_{1} n + ik\bar{U}_{1} } \right\}\left( {\frac{1}{{k^{2} c_{1}^{2} }}} \right)\left\{ {\frac{{\nu_{01} }}{{k_{1} }} + \frac{1}{{\varepsilon_{1}^{2} }}\left( {\varepsilon_{1} n + ik\bar{U}_{1} } \right)} \right\} + 1} \right] \hfill \\ \end{aligned} \right]^{{\frac{1}{2}}} , $$
(34)
$$ \lambda_{2} = \frac{{g\gamma_{2} }}{{2c_{2}^{2} }} - k\left[ \begin{aligned} &\left( {\frac{{g\gamma_{2} }}{{2kc_{2}^{2} }}} \right)^{2} + \frac{{\frac{{g^{2} }}{{c_{2}^{2} }}\left( {\gamma_{2} - 1} \right)}}{{\left\{ {\frac{{\nu_{02} }}{{k_{2} }} + \frac{1}{{\varepsilon_{2}^{2} }}\left( {\varepsilon_{2} n + ik\bar{U}_{2} } \right)} \right\}\left\{ {\varepsilon_{2} n + ik\bar{U}_{2} } \right\}}} \hfill \\&\quad + \left[ {\left\{ {\varepsilon_{2} n + ik\bar{U}_{2} } \right\}\left( {\frac{1}{{k^{2} c_{2}^{2} }}} \right)\left\{ {\frac{{\nu_{02} }}{{k_{2} }} + \frac{1}{{\varepsilon_{2}^{2} }}\left( {\varepsilon_{2} n + ik\bar{U}_{2} } \right)} \right\} + 1} \right] \hfill \\ \end{aligned} \right]^{{\frac{1}{2}}} $$
(35)
$$ \bar{\lambda }_{1} = \frac{{m\alpha_{1} }}{2} + \left[ \begin{aligned} &\left( {\frac{{m\alpha_{1} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{1} - 1} \right)m\alpha_{1} }}{{\gamma_{1} \left\{ {\varepsilon_{1} \bar{n} + iU_{1} } \right\}\left\{ {\frac{{\nu_{1} }}{{k_{1} }} + \frac{1}{{\varepsilon_{1}^{2} }}\left( {\varepsilon_{1} \bar{n} + iU_{1} } \right)} \right\}}} \hfill \\&\quad + \left[ {\left( {\frac{{m\alpha_{1} }}{{\gamma_{1} }}} \right)\left\{ {\varepsilon_{1} \bar{n} + iU_{1} } \right\}\left\{ {\frac{{\nu_{1} }}{{k_{1} }} + \frac{1}{{\varepsilon_{1}^{2} }}\left( {\varepsilon_{1} \bar{n} + iU_{1} } \right)} \right\} + 1} \right] \hfill \\ \end{aligned} \right]^{{\frac{1}{2}}} , $$
(36)
$$ \bar{\lambda }_{2} = \frac{{m\alpha_{2} }}{2} - \left[ \begin{aligned} &\left( {\frac{{m\alpha_{2} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{2} - 1} \right)m\alpha_{2} }}{{\gamma_{2} \left\{ {\varepsilon_{2} \bar{n} + iU_{2} } \right\}\left\{ {\frac{{\nu_{2} }}{{k_{2} }} + \frac{1}{{\varepsilon_{2}^{2} }}\left( {\varepsilon_{2} \bar{n} + iU_{2} } \right)} \right\}}} \hfill \\&\quad + \left[ {\left( {\frac{{m\alpha_{2} }}{{\gamma_{2} }}} \right)\left\{ {\varepsilon_{2} \bar{n} + iU_{2} } \right\}\left\{ {\frac{{\nu_{2} }}{{k_{2} }} + \frac{1}{{\varepsilon_{2}^{2} }}\left( {\varepsilon_{2} \bar{n} + iU_{2} } \right)} \right\} + 1} \right] \hfill \\ \end{aligned} \right]^{{\frac{1}{2}}} , $$
(37)
$$ \bar{\lambda }_{3} = \frac{{m\alpha_{1} }}{2} + \left[ {\left( {\frac{{m\alpha_{1} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{1} - 1} \right)m\alpha_{1} }}{{\gamma_{1} \bar{n}^{2} }} + \left( {\frac{{m\alpha_{1} }}{{\gamma_{1} }}} \right)\bar{n}^{2} + 1} \right]^{{\frac{1}{2}}} , $$
(38)
$$ \bar{\lambda }_{4} = \frac{{m\alpha_{2} }}{2} - \left[ {\left( {\frac{{m\alpha_{2} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{2} - 1} \right)m\alpha_{2} }}{{\gamma_{2} \bar{n}^{2} }} + \left( {\frac{{m\alpha_{2} }}{{\gamma_{2} }}} \right)\bar{n}^{2} + 1} \right]^{{\frac{1}{2}}} . $$
(39)
$$ \bar{\lambda }_{5} = \frac{{m\alpha_{1} }}{2} + \left[ {\left( {\frac{{m\alpha_{1} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{1} - 1} \right)m\alpha_{1} }}{{\gamma_{1} \bar{n}\left\{ {\frac{{\nu_{1} \varepsilon_{1} }}{{k_{1} }} + \bar{n}} \right\}}} + \left[ {\left( {\frac{{m\alpha_{1} }}{{\gamma_{1} }}} \right)\bar{n}\left\{ {\frac{{\nu_{1} \varepsilon_{1} }}{{k_{1} }} + \bar{n}} \right\} + 1} \right]} \right]^{{\frac{1}{2}}} , $$
(40)
$$ \bar{\lambda }_{6} = \frac{{m\alpha_{2} }}{2} - \left[ {\left( {\frac{{m\alpha_{2} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{2} - 1} \right)m\alpha_{2} }}{{\gamma_{2} \bar{n}\left\{ {\frac{{\nu_{2} \varepsilon_{2} }}{{k_{2} }} + \bar{n}} \right\}}} + \left[ {\left( {\frac{{m\alpha_{2} }}{{\gamma_{2} }}} \right)\bar{n}\left\{ {\frac{{\nu_{2} \varepsilon_{2} }}{{\bar{k}_{2} }} + \bar{n}} \right\} + 1} \right]} \right]^{{\frac{1}{2}}} . $$
(41)
$$ \bar{\lambda }_{7} = \frac{{m\alpha_{1} }}{2} + \left[ {\left( {\frac{{m\alpha_{1} }}{2}} \right)^{2} + \frac{{\left( {\gamma_{1} - 1} \right)m\alpha_{1} }}{{\gamma_{1} \left( {\bar{n} + iU_{1} } \right)^{2} }} + \left( {\frac{{m\alpha_{1} }}{{\gamma_{1} }}} \right)\left( {\bar{n} + iU_{1} } \right)^{2} + 1} \right]^{{\frac{1}{2}}} , $$
(42)
$$ \bar{\lambda }_{8} = \frac{{m\,\alpha_{2} \,}}{2\,} - \left[ {\left( {\frac{{m\alpha_{2} }}{2\,}} \right)^{2} + \frac{{\left( {\gamma_{2} - 1} \right)\,\,m\,\,\alpha_{2} }}{{\gamma_{2} \,\left( {\bar{n}\, + i\,U_{{2_{\begin{subarray}{l} \\ \end{subarray} } }} } \right)^{2} }} + \,\,\left( {\frac{{m\,\alpha_{2} }}{{\gamma_{2} }}} \right)\,\left( {\bar{n}\, + i\,U_{{2_{\begin{subarray}{l} \\ \end{subarray} } }} } \right)^{2} + 1\,} \right]^{{\frac{1}{2}}} , $$
(43)
$$ \zeta_{1} = \left( {\frac{{m\,\alpha_{1} }}{{\gamma_{1} }}} \right)\,\,\left( {\frac{{m\,\alpha_{2} }}{{\gamma_{2} }}} \right)\,\,\alpha_{2} ,\,\,\,\,\,\,\,\zeta_{2} = \,\,\left( {\frac{{m\,\alpha_{1} }}{{\gamma_{1} }}} \right)\,\,\left( {\frac{{m\,\,\alpha_{2} }}{{\gamma_{2} }}} \right)\,\,\alpha_{1} ,\, $$
(44)
$$ \zeta_{3} = \left( {\frac{{m\alpha_{2} }}{{\gamma_{2} }}} \right)\alpha_{2} ,\quad \zeta_{4} = \left( {\frac{{m\alpha_{1} }}{{\gamma_{1} }}} \right)\alpha_{1} , $$
(45)
$$ \zeta_{5} = 2\left\{ \begin{aligned} &\left( {\frac{{m\alpha_{1} }}{{\gamma_{1} }}} \right)\left\{ { - \frac{{m\alpha_{2} }}{2} - \frac{1}{2}\left( {\frac{{m\alpha_{2} }}{2}} \right)^{2} - 1} \right\}\alpha_{2} \hfill \\&\quad - \left( {\frac{{m\alpha_{2} }}{{\gamma_{2} }}} \right)\left\{ { - \frac{{m\alpha_{1} }}{2} + \frac{1}{2}\left( {\frac{{m\alpha_{1} }}{2}} \right)^{2} + 1} \right\}\alpha_{1} + \frac{{m\alpha_{1} }}{{\gamma_{1} }}\frac{{m\alpha_{2} }}{{\gamma_{2} }}A \hfill \\ \end{aligned} \right\}, $$
(46)
$$ \zeta_{6} = 2\left[ {\left\{ { - \frac{{m\alpha_{2} }}{2} - \frac{1}{2}\left( {\frac{{m\alpha_{2} }}{2}} \right)^{2} - 1} \right\}\alpha_{2} - \frac{1}{2}\left\{ {\frac{{m\alpha_{2} }}{{\gamma_{2} }}\frac{{\left( {\gamma_{1} - 1} \right)m\alpha_{1} }}{{\gamma_{1} }}} \right\}\alpha_{1} + \frac{{m\alpha_{2} }}{{\gamma_{2} }}A} \right], $$
(47)
$$ \zeta_{7} = 2\left[ { - \frac{1}{2}\frac{{m\alpha_{1} }}{{\gamma_{1} }}\frac{{\left( {\gamma_{2} - 1} \right)m\alpha_{2} }}{{\gamma_{2} }}\alpha_{2} - \left\{ { - \frac{{m\alpha_{1} }}{2} + \frac{1}{2}\left( {\frac{{m\alpha_{1} }}{2}} \right)^{2} + 1} \right\}\alpha_{1} + \frac{{m\alpha_{1} }}{{\gamma_{1} }}A} \right], $$
(48)
$$ \zeta_{8} = \frac{{\left( {\gamma_{2} - 1} \right)m\alpha_{2} }}{{\gamma_{2} }}\alpha_{2} + \frac{{\left( {\gamma_{1} - 1} \right)m\alpha_{1} }}{{\gamma_{1} }}\alpha_{1} - 2A. $$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshoudy, G.A., Awasthi, M.K. Compressibility effects on the Kelvin–Helmholtz and Rayleigh–Taylor instabilities between two immiscible fluids flowing through a porous medium. Eur. Phys. J. Plus 135, 169 (2020). https://doi.org/10.1140/epjp/s13360-020-00160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00160-x

Navigation