Skip to main content

Advertisement

Log in

Performance of n-on-p planar pixel sensors with active edges at high-luminosity environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Future high-energy physics experiments require highly segmented silicon sensors of increased geometrical efficiency with the ability to withstand extremely high radiation damage. The performance of planar n-on-p sensors with active edges is simulated at high radiation fluences up to 1 × 1016 neq/cm2, using a three-level trap model for p-type silicon material. Taking advantage of the secondary ion mass spectrometry (SIMS) technique, an accurate representation of the structure was obtained in terms of doping profile. The breakdown voltage, leakage current, hole density and electric field distributions as well as the charge collection efficiency (CCE) are studied as a function of radiation fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Groupe d’Etude de la Matière Condensée. Université Versailles-Saint Quentin en Yvelines.

References

  1. S. Jezequel, Nucl. Phys. B Proc. Suppl. 245, 145 (2013)

    Google Scholar 

  2. E. Currás, M. Fernández, C. Gallrapp, L. Gray, M. Mannelli, P. Meridiani, M. Moll, S. Nourbakhsh, C. Scharf, P. Silva, G. Steinbrueck, T.T. de Fatis, I. Vila, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 845, 60 (2017)

    Google Scholar 

  3. B. Schmidt, J. Phys: Conf. Ser. 706, 022002 (2016)

    Google Scholar 

  4. G. Bolla, D. Bortoletto, G.P. Grim, R.L. Lander, Z. Li, S. Willard, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 423, 290 (1999)

    Google Scholar 

  5. O. Koybasi, G. Bolla, D. Bortoletto, I.E.E.E. Trans, Nucl. Sci. 57, 2978 (2010)

    Google Scholar 

  6. M. Mekheldi, S. Oussalah, A. Lounis, N. Brihi, Results in Physics 6, 80 (2016)

    Google Scholar 

  7. D. Djamai, E. L. Gkougkousis, M. Chahdi, A. Lounis, and S. Oussalah, in 2018 Int. Semicond. Conf. CAS (Sinaia, Romania, 2018), pp. 227–230. https://ieeexplore.ieee.org/document/8539752

  8. T. Peltola, X. Wu, J. Kalliopuska, C. Granja, J. Jakubek, M. Jakubek, J. Härkönen, A. Gädda, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 813, 139 (2016)

    Google Scholar 

  9. M. Meschini, G.F. Dalla Betta, M. Boscardin, G. Calderini, G. Darbo, G. Giacomini, A. Messineo, S. Ronchin, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 831, 116 (2016)

    Google Scholar 

  10. ATLAS User’s manual, Silvaco International inc, Device Simulation. https://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html

  11. ADVACAM. http://advacam.com/company/semiconductors

  12. S. A. Schwarz, in Encycl. Mater. Sci. Technol., edited by K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière (Elsevier, Oxford, 2001), pp. 8283–8290. http://www.sciencedirect.com/science/article/pii/B0080431526014820

  13. E. Gkougkousis, Etudes de Bruit Du Fond Dans Le Canal H → ZZ* → 4l Pour Le Run 1 Du LHC. Perspectives Du Mode BbH (→ Γγ) et Études d’un Système de Détecteur Pixel Amélioré Pour La Mise à Niveau de l’expérience ATLAS Pour La Phase HL-LHC, Theses, Université Paris-Saclay, 2016. https://tel.archives-ouvertes.fr/tel-01307137

  14. T. Clarysse, D. Vanhaeren, I. Hoflijk, W. Vandervorst, Mater. Sci. Eng. R Rep. 47, 123 (2004)

    Google Scholar 

  15. G. Lindström, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 512, 30 (2003)

    Google Scholar 

  16. F. Moscatelli, D. Passeri, A. Morozzi, R. Mendicino, G.-D. Betta, G.M. Bilei, IEEE Trans. Nucl. Sci. 63, 2716 (2016)

    Google Scholar 

  17. A. Morozzi, D. Passeri, F. Moscatelli, G.-F.D. Betta, G.M. Bilei, J. Instrum. 11, C12028 (2016)

    Google Scholar 

  18. J. Zhang, X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL, Ph.D. dissertation, University of Hamburg, Hamburg, Germany (2013)

  19. M. Bomben, A. Bagolini, M. Boscardin, L. Bosisio, G. Calderini, J. Chauveau, G. Giacomini, A. La Rosa, G. Marchiori, N. Zorzi, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 712, 41 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank F. Jomard (GEMAC) and the LAL team for their contribution to the preparation of the samples and the SIMS measurement. The authors are also very grateful to ICOSI Lab and the University of Khenchela, Algeria, for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djemouai Djamai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djamai, D., Lounis, A., Gkougkousis, EL. et al. Performance of n-on-p planar pixel sensors with active edges at high-luminosity environment. Eur. Phys. J. Plus 135, 101 (2020). https://doi.org/10.1140/epjp/s13360-020-00149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00149-6

Navigation