Skip to main content

Advertisement

Log in

On the modeling of a solar, wind and fossil fuel energy source by means of the thermostatted kinetic theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is devoted to the modeling of a hybrid energy distribution network with storage, within the thermostatted kinetic theory framework. The network consists of a non-renewable energy source and a renewable energy source. The energy storage is modeled by the introduction of the external force field coupled to the thermostat term. The activation parameters of the energy sources are assumed time-dependent in order to mimic the time-dependent efficiency of different specific energy sources. In particular a solar energy source, a wind energy source and a fossil fuel energy source are modeled. A computational analysis is performed to show the effects of the intermittent activation on the plan of quality improvement of the energy provided to the customers and on the construction of the energy storage. Discussions and future research perspectives are proposed in the last section of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B.D. Solomon, K. Krishna, The coming sustainable energy transition: history, strategies, and outlook. Energy Policy 39, 7422–7431 (2011)

    Google Scholar 

  2. A.N. Menagaki, K.P. Tsagarakis, Rich enough to go renewable, but too early to leave fossil energy? Renew. Sustain. Energy Rev. 41, 1465–1477 (2015)

    Google Scholar 

  3. B.K. Sovacool, How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 13, 202–215 (2016)

    Google Scholar 

  4. S. Bolwig, G. Bazbauers, A. Klitkou, P.D. Lund, A. Blumberga, A. Grasvelsins, D. Blumberga, Review of modelling energy transitions pathways with application to energy system flexibility. Renew. Sustain. Energy Rev. 101, 440–452 (2019)

    Google Scholar 

  5. M. Talaat, M.A. Farahat, M.H. Elkholy, Renewable power integration: experimental and simulation study to investigate the ability of integrating wave, solar and wind energies. Energy 170, 668–682 (2019)

    Google Scholar 

  6. A.S. Dagoumas, N.E. Koltsaklis, Review of models for integrating renewable energy in the generation expansion planning. Appl. Energy 242, 1573–1587 (2019)

    Google Scholar 

  7. F. Romanelli, Strategies for the integration of intermittent renewable energy sources in the electrical system. Eur. Phys. J. Plus 131, 53 (2016)

    Google Scholar 

  8. G. Notton, M.-L. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte, A. Fouilloy, Intermittent and stochastic character of renewable energy sources: consequences, cost of intermittence and benefit of forecasting. Renew. Sustain. Energy Rev. 87, 96–105 (2018)

    Google Scholar 

  9. A. Ghoshray, B. Johnson, Trends in world energy prices. Energy Econ. 32, 1147–1156 (2010)

    Google Scholar 

  10. G. Filatrella, A.H. Nielsen, N.F. Pedersen, Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61, 485–491 (2008)

    Google Scholar 

  11. R. Carareto, M.S. Baptista, C. Grebogi, Natural synchronization in power-grids with anti-correlated units. Commun. Nonlinear Sci. Numer. Simul. 18, 1035–1046 (2013)

    Google Scholar 

  12. A. Sciré, I. Tuval, V.M. Eguíluz, Dynamic modeling of the electric transportation network. Europhys. Lett. 71, 318–324 (2005)

    Google Scholar 

  13. G.A. Pagani, M. Aiello, The power grid as a complex network: a survey. Phys. A 392, 2688–2700 (2013)

    Google Scholar 

  14. R. Baños, F. Manzano-Agugliaro, F.G. Montoya, C. Gil, A. Alcayde, J. Gómez, Optimization methods applied to renewable and sustainable energy: a review. Renew. Sustain. Energy Rev. 15, 1753–1766 (2011)

    Google Scholar 

  15. K.-H. Chang, G. Lin, Optimal design of hybrid renewable energy systems using simulation optimization. Simul. Model. Pract. Theory 52, 40–51 (2015)

    Google Scholar 

  16. P.H.J. Nardelli, N. Rubido, C. Wang, M.S. Baptista, C. Pomalaza-Raez, P. Cardieri, M. Latva-aho, Models for the modern power grid. Eur. Phys. J. Spec. Topics 223, 2423–2437 (2014)

    Google Scholar 

  17. X. Fang, S. Misra, G. Xue, D. Yang, Smart grid—the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. 14, 944–980 (2012)

    Google Scholar 

  18. M.L. Tuballa, M.L. Abundo, A review on the development of smart grid technologies. Renew. Sustain. Energy Rev. 59, 710–725 (2016)

    Google Scholar 

  19. S. Bigerna, C.A. Bollino, S. Micheli, Socio-economic acceptability for smart grid development—a comprehensive review. J. Clean. Prod. 131, 399–409 (2016)

    Google Scholar 

  20. M.S. Hossain, N.A. Madlool, N.A. Rahim, J. Selvaraj, A.K. Pandey, A.F. Khan, Role of smart grid in renewable energy: an overview. Renew. Sustain. Energy Rev. 60, 1168–1184 (2016)

    Google Scholar 

  21. M. Ourahou, W. Ayrir, B. El Hassouni, A. Haddi, Review on smart grid control and reliability in presence of renewable energies: challenges and prospects. Math. Comput. Simul. (2018). https://doi.org/10.1016/j.matcom.2018.11.009

  22. S. Mei, X. Zhang, M. Cao, Power Grid Complexity (Springer, Berlin, 2011)

    Google Scholar 

  23. C. Petermann, S.B. Amor, A. Bui, A complex system approach for a reliable smart grid modeling. Front. Artif. Intell. Appl. Adv. Knowl. Based Intell. Inf. Eng. Syst. 243, 149–158 (2012)

    Google Scholar 

  24. M. Dalla Via, C. Bianca, I. El Abbassi, A.-M. Darcherif, A hybrid thermostatted kinetic framework for the modeling of a hybrid multisource system with storage, under review

  25. C. Bianca, An existence and uniqueness theorem to the cauchy problem for thermostatted-KTAP models. Int. J. Math. Anal. 6, 813–824 (2012)

    Google Scholar 

  26. C. Bianca, J. Riposo, Mimic therapeutic actions against keloid by thermostatted kinetic theory methods. Eur. Phys. J. Plus 130, 159 (2015)

    Google Scholar 

  27. C. Bianca, L. Brézin, Modeling the antigen recognition by B-cell and Tcell receptors through thermostatted kinetic theory methods. Int. J. Biomath. 10, 1750072 (2017)

    Google Scholar 

  28. C. Bianca, C. Mogno, A thermostatted kinetic theory model for event-driven pedestrian dynamics. Eur. Phys. J. Plus 133, 213 (2018)

    Google Scholar 

  29. W.G. Hoover, A.J.C. Ladd, B. Moran, High-strain-rate plastic flow studied via nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818–1820 (1982)

    Google Scholar 

  30. D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, A.J.C. Ladd, Nonequilibrium molecular dynamics via Gauss’s principle of least constraint. Phys. Rev. A 28, 1016–1021 (1983)

    Google Scholar 

  31. G.P. Morriss, C.P. Dettmann, Thermostats: analysis and application. Chaos 8, 321–336 (1998)

    Google Scholar 

  32. O.G. Jepps, L. Rondoni, Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition. J. Phys. A Math. Theor. 43, 133001 (2010)

    Google Scholar 

  33. R.B. Myerson, Game Theory: Analysis of Conflict (Harvard University Press, Cambridge, 1997)

    Google Scholar 

  34. M.D. Via, C. Bianca, I. El Abbassi, A.-M. Darcherif, A thermostatted kinetic theory model for a hybrid multisource system with storage. Appl. Math. Model. 78, 232–248 (2020)

    Google Scholar 

  35. P.J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic Press, London, 1984)

    Google Scholar 

  36. A. Veeraragavan, L. Montgomery, A. Datas, Night time performance of a storage integrated solar thermophotovoltaic (SISTPV) system. Sol. Energy 108, 377–389 (2014)

    Google Scholar 

  37. M.S. Yousef, A.K.A. Rahman, S. Ookawara, Performance investigation of low—concentration photovoltaic systems under hot and arid conditions: experimental and numerical results. Energy Convers. Manag. 128, 82–94 (2016)

    Google Scholar 

  38. G. Li, Q. Xuan, X. Zhao, G. Pei, J. Ji, Y. Su, A novel concentrating photovoltaic/daylighting control system: optical simulation and preliminary experimental analysis. Appl. Energy 228, 1362–1372 (2018)

    Google Scholar 

  39. A. Kusiak, H. Zheng, Z. Song, On-line monitoring of power curves. Renew. Energy 34, 1487–1493 (2009)

    Google Scholar 

  40. M. Lydia, S.S. Kumar, A.I. Selvakumar, G.E.P. Kumar, A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 30, 452–460 (2014)

    Google Scholar 

  41. G.A.M. van Kuik, The Lanchester–Betz–Joukowsky limit. Wind Energy 10, 289–291 (2007)

    Google Scholar 

  42. H. Jiang, Y. Li, Z. Cheng, Performances of ideal wind turbine. Renew. Energy 83, 658–662 (2015)

    Google Scholar 

  43. P. Wais, A review of Weibull functions in wind sector. Renew. Sustain. Energy Rev. 70, 1099–1107 (2017)

    Google Scholar 

  44. https://www.meteoblue.com. Accessed 25 Apr 2019

  45. C.N. Nwafor, A.A. Oyedele, Simulation and hedging oil price with geometric Brownian Motion and single-step binomial price model. Eur. J. Bus. Manag. 9, 68–81 (2017)

    Google Scholar 

  46. N. Meade, Oil prices—Brownian motion or mean reversion? A study using a one year ahead density forecast criterion. Energy Econ. 32, 1485–1498 (2010)

    Google Scholar 

  47. S. Mirkhani, Y. Saboohi, Stochastic modeling of the energy supply system with uncertain fuel price—a case of emerging technologies for distributed power generation. Appl. Energy 93, 668–674 (2012)

    Google Scholar 

  48. C. Bianca, M. Menale, On the interaction domain reconstruction in the weighted thermostatted kinetic framework. Eur. Phys. J. Plus 134, 143 (2019)

    Google Scholar 

  49. Y. Yang, S. Bremmer, C. Menictas, M. Kay, Battery energy storage system size determination in renewable energy systems: a review. Renew. Sustain. Energy Rev. 91, 109–125 (2018)

    Google Scholar 

  50. L.A. Wong, V.K. Ramachandaramurthy, P. Taylor, J.B. Ekanayake, S.L. Walker, S. Padmanaban, Review on the optimal placement, sizing and control of an energy storage system in the distribution network. J. Energy Storage 21, 489–504 (2019)

    Google Scholar 

  51. I. Brazzoli, From the discrete kinetic theory to modelling open systems of active particles. Appl. Math. Lett. 21, 155–160 (2008)

    Google Scholar 

  52. C. Bianca, On the modelling of space dynamics in the kinetic theory for active particles. Math. Comput. Modell. 51, 72–83 (2010)

    Google Scholar 

  53. H. Mehrjerdi, R. Hemmati, E. Farrokhi, Nonlinear stochastic modeling for optimal dispatch of distributed energy resources in active distribution grids including reactive power. Simul. Model. Pract. Theory 94, 1–13 (2019)

    Google Scholar 

  54. S. Arianos, E. Bompard, A. Carbone, F. Xue, Power grid vulnerability: a complex network approach. Chaos Interdiscip. J. Nonlinear Sci. 19, 013119 (2009)

    Google Scholar 

  55. Y. Dai, G. Chen, Z. Dong, Y. Xue, D.J. Hill, Y. Zhao, An improved framework for power grid vulnerability analysis considering critical system features. Phys. A 395, 405–415 (2014)

    Google Scholar 

  56. C. Bianca, Modeling complex systems with particles refuge by thermostatted kinetic theory methods. Abstr. Appl. Anal. 2013, 152174 (2013)

    Google Scholar 

  57. P. Cruciti, V. Latora, M. Marchiori, A topological analysis of the Italian electric power grid. Phys. A 338, 92–97 (2004)

    Google Scholar 

  58. R. Albert, I. Albert, G.L. Nakarado, Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004)

    Google Scholar 

  59. M.A.M. Mouhammad, I. El Abbassi, A.-M. Darcherif, M. El Ganaoui, New robust energy management model for interconnected power networks using Petri Nets approach. Smart Grid Renew. Energy 7, 46–65 (2016)

    Google Scholar 

  60. B.C. Wang, M. Sechilariu, F. Locment, Power flow Petri Net modelling for building integrated multi-source power system with smart grid interaction. Math. Comput. Simual. 91, 119–133 (2013)

    Google Scholar 

  61. A. Hooshmand, H.A. Malki, J. Mohammadpour, Power flow management of microgrid networks using model predictive control. Comput. Math. Appl. 64, 869–876 (2012)

    Google Scholar 

  62. P.-F. Bach, Towards 50% wind electricity in Denmark: dilemmas and challenges. Eur. Phys. J. Plus 131, 161 (2016)

    Google Scholar 

  63. A. Coester, M.W. Hofkes, E. Papyrakis, An optimal mix of conventional power systems in the presence of renewable energy: a new design for the German electricity market. Energy Policy 116, 312–322 (2018)

    Google Scholar 

  64. R.G. Calvet, J.M.M. Duart, S.S. Calle, Present state and perspectives of variable renewable energies in Spain. Eur. Phys. J. Plus 133, 126 (2018)

    Google Scholar 

  65. S. Diaf, G. Notton, M. Belhamel, M. Haddadi, A. Louche, Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Appl. Energy 85, 968–987 (2008)

    Google Scholar 

  66. M. Zaibi, G. Champenois, X. Roboam, J. Belhadj, B. Sareni, Smart power management of a hybrid photovoltaic/wind stand-alone system coupling battery storage and hydraulic network. Math. Comput. Simul. 146, 210–228 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bianca.

The hybrid thermostatted kinetic theory framework

The hybrid thermostatted kinetic theory framework

This appendix deals with the hybrid thermostatted kinetic theory framework for the modeling of a network \({\mathcal {N}}\) composed of \({\mathbf {N}}=2\) energy sources: a non-renewable energy source NR and a renewable energy source R. The energy storage is also taken into account.

A discrete quality parameter \(u\in [0,1]\) identifies the energy sources and specifically the energy source NR is associated with \(u_1=1/3\) (low quality), while the energy source R is associated with \(u_2=2/3\) (high quality). Each energy source is a functional subsystem and is described by means of the distribution function \(f_i(t,w):[0,+\infty [\times D_w\rightarrow {\mathbb {R}}^+\), for \(i\in \{1,2 \}\), over the microscopic state \(w\in D_w\subset {\mathbb {R}}^+\) which models the continuous energy variable. Accordingly, \(f_i(t,w)dw\) represents the number of customers served at time t with an energy value \(w\in [w,w+dw]\) which is produced by the energy source \(u_i\), for \(i\in \{1,2 \}\).

The introduction of an external positive force field \({\mathbf {F}}=(F_1,F_2)\in ({\mathbb {R}}^+)^2\), acting on each functional subsystem, models the construction of the energy storage. The external force takes a certain amount of the energy produced by the sources and allocates it into the energy storage. From the mathematical point of view, the external force field \({\mathbf {F}}\) moves the system far from the equilibrium. Therefore, a thermostat term \(\alpha _{(2,2)}[{\mathbf {F}},{\mathbf {f}}](t)\), where \({\mathbf {f}}=\left( f_1(t,w),f_2(t,w) \right) \) is also considered in order to control the global activation energy of the system and allows the existence of a nonequilibrium stationary state.

The macroscopic quantities are represented by the moments of the distribution function. Specifically the global (pq)-th order moment writes:

$$\begin{aligned} {\mathbb {E}}^{[{\mathbf {F}}]}_{(p,q)}[{\mathbf {f}}](t)=\displaystyle \sum _{i=1}^2 u_i^p\int _{D_w}w^q\,f_i(t,w)\,\mathrm{d}w,\quad \forall \, p,q\in {\mathbb {N}}. \end{aligned}$$
(21)

In particular, it is assumed that \({\mathbb {E}}^{[{\mathbf {F}}]}_{(0,0)}[{\mathbf {f}}](t)=1\) for \(t\in [0,+\infty [\) (normalization condition). In the case \({\mathbf {F}}={\mathbf {0}}\), the notation \({\mathbb {E}}^{[{\mathbf {F}}={\mathbf {0}}]}_{(p,q)}[{\mathbf {f}}](t)\) simplifies into \({\mathbb {E}}_{(p,q)}[{\mathbf {f}}](t)\).

The energy sources interact via the network \({\mathcal {N}}\) thus modifying their microscopic state. The time evolution of the distribution function \(f_i(t,w)\) is given by balancing the inlet and outlet flows into the elementary volume \([w,w+dw]\):

$$\begin{aligned} \partial _t f_{i}(t,w) +\partial _w\left( \left( F_i - \alpha _{(2,2)}[{\mathbf {F}},{\mathbf {f}}](t)\, w\right) f_{i}(t,w)\right) =J_{i}[{\mathbf {f}}](t,w) ,\quad i\in \{1,2 \}, \end{aligned}$$
(22)

where \(J_{i}[{\mathbf {f}}](t,w)=G_{i}[{\mathbf {f}}](t,w)-L_{i}[{\mathbf {f}}](t,w)\), for \(i\in \{1,2 \}\), being \(G_{i}[{\mathbf {f}}](t,w)\) and \(L_{i}[{\mathbf {f}}](t,w)\) the gain term and the loss term, respectively, that write as follows:

$$\begin{aligned} G_{i}[{\mathbf {f}}](t,w)=&\displaystyle \sum _{l=1}^2\, \sum _{j=1}^2 \int _{D_w\times D_w} \eta _{lj}\left( w_*,w^*\right) \, {\mathcal {B}}_{l j}^{i}\, {\mathcal {A}}_{l j}\left( w_*,w^{*};w \right) \nonumber \\&\times f_{l}(t,w_*)\,f_{j}(t,w^*)\,\mathrm{d}w_*\,\mathrm{d}w^*, \end{aligned}$$
(23)
$$\begin{aligned} L_{i}[{\mathbf {f}}](t,w)=&\displaystyle f_{i}(t,w)\, \sum _{j=1}^2 \,\int _{D_w} \, \eta _{ij}\left( w,w^* \right) \, f_{j}(t,w^{*})\, dw^*, \end{aligned}$$
(24)

and the functional parameters have the following meaning:

  • \(\eta _{lj}\left( w_*,w^*\right) : D_w \times D_w\rightarrow {\mathbb {R}}^+\) denotes the interaction rate between the energy source \(u_l\), with the energy value \(w_*\), and the energy source \(u_j\), with the energy value \(w^*\).

  • \({\mathcal {A}}_{l j}\left( w_*,w^{*};w \right) :D_w \times D_w\times D_w \rightarrow {\mathbb {R}}^+\) denotes the probability of the evolution of the energy value \(w_*\) of the source \(u_l\) into the energy value w, after the interaction with the source \(u_j\) with the energy value \(w^*\). Then one has

    $$\begin{aligned} \displaystyle \int _{D_w}{\mathcal {A}}_{l j}\left( w_*,w^{*};w \right) \,\mathrm{d}w=1,\quad \forall \,w_*,w^*\in D_w. \end{aligned}$$
    (25)
  • \({\mathcal {B}}_{l j}^{i}\) denotes the probability of the activation of the energy source \(u_i\) after the interaction between the energy source \(u_l\) and the energy source \(u_j\). Then one has

    $$\begin{aligned} \displaystyle \sum _{i=1}^2{\mathcal {B}}_{l j}^{i}=1,\quad \forall l,j\in \{1,2 \}. \end{aligned}$$
    (26)

The thermostat term \(\alpha _{(2,2)}[{\mathbf {F}},{\mathbf {f}}](t)\) reads:

$$\begin{aligned} \alpha _{(2,2)}[{\mathbf {F}},{\mathbf {f}}](t)=\frac{\sum _{j=1}^2\,F_j u_j^2 \int _{D_w} w\,f_{j}(t,w)\,\mathrm{d}w}{\displaystyle {\mathbb {E}}^{[{\mathbf {F}}]}_{(2,2)}[{\mathbf {f}}](t)}, \end{aligned}$$
(27)

and controls the global (2, 2)-order moment \({\mathbb {E}}^{[{\mathbf {F}}]}_{(2,2)}[{\mathbf {f}}](t)\).

The model analyzed in this work is derived from the framework (22) by considering the following assumptions:

  • The interaction rate \(\eta _{lj}\left( w_*,w^*\right) : D_w \times D_w\rightarrow {\mathbb {R}}^+\) is modeled as follows:

    $$\begin{aligned} \eta _{lj}(w_*,w^*)=\alpha +\beta \delta _{lj},\quad \alpha ,\beta \in {\mathbb {R}}^+, \end{aligned}$$
    (28)

    where \(\delta _{lj}\) denotes the delta of Kronecker. In particular it is assumed that the autointeraction rates are greater than the interaction rates between two different energy sources, i.e. \(\eta _{ll}>\eta _{lj}\).

  • The probability \({\mathcal {A}}_{l j}\left( w_*,w^{*};w \right) :D_w \times D_w\times D_w \rightarrow {\mathbb {R}}^+\) is modeled as follows:

    $$\begin{aligned} {\mathcal {A}}_{l j}(w_*,w^*;w)=\delta (w-d_{lj}(w_*,w^*)), \end{aligned}$$
    (29)

    where \(\delta (\cdot )\) denotes the delta of Dirac and

    $$\begin{aligned} d_{lj}(w_*,w^*)={\left\{ \begin{array}{ll}w_*-\lambda _1 &{} \text {if}\quad l=1\quad \text {and}\quad j=2, \\ w_*+\lambda _2 &{} \text {if}\quad l=2\quad \text {and} \quad j=1,\\ w_*&{} \text {if}\quad l=j, \end{array}\right. } \end{aligned}$$
    (30)

    and \(\lambda _1,\lambda _2\in [0,1]\). The choice of the definition (30) relies on the following assumptions: the energy source NR should reduce its energy value, the energy source R should increase its energy value, the autointeraction does not modify the energy value of an energy source.

  • The probability \({\mathcal {B}}_{l j}^{i}\) is modeled as follows:

    $$\begin{aligned} {\mathcal {B}}_{l j}^{i}={\left\{ \begin{array}{ll}\epsilon _{lj}(t)&{} \text {if}\quad i=l, \\ 1-\epsilon _{lj}(t)&{} \text {if}\quad i\ne l,\end{array}\right. } \end{aligned}$$
    (31)

    where \(\epsilon _{lj}(t):[0,+\infty [\rightarrow [0,1]\), for \(l,j\in \{1,2 \}\). Specifically, \(\epsilon _{1j}(t)\) and \(\epsilon _{2j}(t)\), for \(j\in \{1,2 \}\), denotes the probability of the activation of the energy source NR and R, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalla Via, M., Bianca, C., El Abbassi, I. et al. On the modeling of a solar, wind and fossil fuel energy source by means of the thermostatted kinetic theory. Eur. Phys. J. Plus 135, 198 (2020). https://doi.org/10.1140/epjp/s13360-020-00121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00121-4

Navigation