Skip to main content
Log in

Alternate backward and forward waves in a coupled nonlinear transmission line

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we investigate backward and forward waves in a coupled nonlinear discrete electrical lattice. It is made of several of the well-known Noguchi electrical transmission line that are transversely coupled to one another by an inductor \(L_{2}\). Based on the linear dispersion law, we show that the behavior of this model depends on the wave frequency that it propagates. It can adopt purely right-handed, purely left-handed or composite right-/left-handed behaviors without changing its structure. It appears that for fixed line’s parameters, the network is right-handed for low frequencies and becomes left-handed for high frequencies. It also appears that the increase of the coupling linear inductor induces a decrease of the width of the bandpass filter in the left-handed region while it increases its width in the right-handed region. By means of a method based on the semi-discrete limit and in suitably scaled coordinates, we derive a two-dimensional NLS equation governing the propagation of slowly modulated waves in the network. The exact transverse bright solitary solution is found. Using this solution, we investigate numerically both right-handed and left-handed behaviours of the system and show how to manipulate the coupling inductor to modify the width and the motion of the bright solitary voltage signals in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.B. Pelap, J.H. Kamga, S.B. Yamgoue, S.M. Ngounou, J.E. Ndecfo, Phys. Rev. E 91, 022925 (2015)

    Article  ADS  Google Scholar 

  2. S. Abdoulkary, A. Danzabe Aboubakar, M. Aboubakar, A. Mohamadou, L. Kavitha, Commun. Nonlinear. Sci. Numer. Simulat. 22, 1288 (2015)

    Article  ADS  Google Scholar 

  3. D.A. Powell, I.V. Shadrivov, Y.S. Kivshar, Appl. Phys. Lett. 94, 084105 (2009)

    Article  ADS  Google Scholar 

  4. R. Hirota, K. Suzuki, J. Phys. Soc. Jpn. 28, 1366 (1970)

    Article  ADS  Google Scholar 

  5. S.B. Yamgoué, F.B. Pelap, Phys. Lett. A 380, 2017 (2016)

    Article  ADS  Google Scholar 

  6. E. Kengne, C. Tadmon, R. Vaillacourt, Chin. J. Phys. 47, 80 (2009)

    Google Scholar 

  7. E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  8. G.R. Deffo, S.B. Yamgoue, F.B. Pelap, Eur. Phys. J. B 91, 242 (2018)

    Article  ADS  Google Scholar 

  9. E. Kengne, W.M. Liu, Phys. Rev. E 97, 052205 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.B. Yamgoué, G.R. Deffo, E. Tala-Tebue, F.B. Pelap, Chin. Phys. B 27, 126303 (2018)

    Article  Google Scholar 

  11. E. Afshari, H. Bhat, A. Hajimiri, J. Marsden, J. Appl. Phys. 99, 054901 (2006)

    Article  ADS  Google Scholar 

  12. K. Narahara, M. Nakamura, Jpn. J. Appl. Phys. 42, 6327 (2003)

    Article  ADS  Google Scholar 

  13. A. Lai, C. Caloz, T. Itoh, IEEE Microw. Mag. 5, 34 (2004)

    Article  Google Scholar 

  14. A.B. Kozyrev, D.W. van der Weide, I.E.E.E. Trans, Micro. Theor. Tech. 53, 238 (2005)

    Article  Google Scholar 

  15. J. Comte, P. Marquié, Chaos Solitons Fractals 29, 307 (2006)

    Article  ADS  Google Scholar 

  16. G.R. Deffo, S.B. Yamgoué, F.B. Pelap, Phys. Rev. E 98, 062201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.B. Yamgoué, G.R. Deffo, F.B. Pelap, Eur. Phys. J. Plus 134, 380 (2019)

    Article  Google Scholar 

  18. A.B. Togueu Motcheyo, J.D. Tchinang Tchameu, S.I. Fewo, C. Tchawoua, T.C. Kofané, Commun. Nonlinear. Sci. Numer. Simulat. 53, 22 (2017). https://doi.org/10.1016/j.cnsns.2017.04.031

    Article  ADS  Google Scholar 

  19. L.Q. English, S.G. Wheeler, Y. Shen, G.P. Veldes, N. Whitaker, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Lett. A 375, 1242 (2011)

    Article  ADS  Google Scholar 

  20. G.P. Veldes, J. Cuevas, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Rev. E 88, 013203 (2013)

    Article  ADS  Google Scholar 

  21. S.B. Yamgoué, G.R. Deffo, E. Tala-Tebue, F.B. Pelap, Chin. Phys. B 27, 096301 (2018)

    Article  ADS  Google Scholar 

  22. G.R. Deffo, S.B. Yamgoué, F.B. Pelap, Phys. Rev. E 100, 022214 (2019)

    Article  ADS  Google Scholar 

  23. G.P. Veldes, J. Cuevas, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Rev. E 83, 046608 (2011)

    Article  ADS  Google Scholar 

  24. J. Ogasawara, K. Narahara, IEICE Electron. Express. 6, 1576 (2009)

    Article  Google Scholar 

  25. D. Feng, J. Jiao, G. Jiang, Phys. Lett. A 382, 2081 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. D.E. Pelinovsky, J. Yang, Physica D 255, 1 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Bruno Yamgoué.

Appendix: Derivation of two-dimensional NLS equation

Appendix: Derivation of two-dimensional NLS equation

To derive the two-dimensional NLS equation describing the propagation of modulated waves in the network, we consider the so-called reductive perturbation method in the semidiscrete approximation, that is, we take the signal voltage in the form given by Eq. (6). It is obvious from this equation that the voltage at any site shifted by an integer j from a reference site (nm) is given by

$$\begin{aligned} \begin{aligned} V_{n+j,m}(t)=&\varepsilon \left[ A(x+\varepsilon j,y,\tau )\exp (i\theta )+A^{*}(x+\varepsilon j,y,\tau )\exp (-i\theta )\right] +\varepsilon ^2B(x+\varepsilon j,y,\tau ) \\&+\varepsilon ^2 \left[ C(x+\varepsilon j,y,\tau )\exp (2i\theta )+C^{*}(x+\varepsilon j,y,\tau )\exp (-2i\theta )\right] , \end{aligned} \end{aligned}$$
(19)
$$\begin{aligned} \begin{aligned} V_{n,m+j}(t)=\,&\varepsilon \left[ A(x,y+\varepsilon j,\tau )\exp (i\theta )+A^{*}(x,y+\varepsilon j,\tau )\exp (-i\theta )\right] +\varepsilon ^2B(x,y+\varepsilon j,\tau ) \\&+\varepsilon ^2 \left[ C(x,y+\varepsilon j,\tau )\exp (2i\theta )+C^{*}(x,y+\varepsilon j,\tau )\exp (-2i\theta )\right] . \end{aligned} \end{aligned}$$
(20)

To reduce the mathematical intractability of the manipulations involved in the analysis, we assume that \(0<\varepsilon \ll 1\) so that Taylor expansions of the following form

$$\begin{aligned} \begin{aligned}&A(x+\varepsilon j,y,\tau )=\,A(x,y,\tau )+\varepsilon j \frac{\partial A}{\partial x}(x,y,\tau ) + \frac{\varepsilon ^2 j^2}{2} \frac{\partial ^2A}{\partial x^2}(x,y,\tau ) + \frac{\varepsilon ^3 j^3}{6} \frac{\partial ^3A}{\partial x^3}(x,y,\tau ) +\cdots \\&A(x,y+\varepsilon j,\tau )=A(x,y,\tau )+\varepsilon j \frac{\partial A}{\partial y}(x,y,\tau ) + \frac{\varepsilon ^2 j^2}{2} \frac{\partial ^2A}{\partial y^2}(x,y,\tau ) + \frac{\varepsilon ^3 j^3}{6} \frac{\partial ^3A}{\partial y^3}(x,y,\tau ) +\cdots \end{aligned} \end{aligned}$$
(21)

are warranted. Here the specific values \(j=1\) and \(j=-1\) are relevant to Eq. (2). The use of the variables \(\theta =k_{1}n+k_{2}m-\omega t,\)\(x=\varepsilon (n-V_{g1}t)\), \(y=\varepsilon (m-V_{g2}t)\) and \(\tau =\varepsilon ^2t\) also implies that the time derivative operators are transformed according to

$$\begin{aligned} \begin{aligned}&\frac{d}{dt}=-\omega \frac{\partial }{\partial \theta } + \varepsilon ^2\frac{\partial }{\partial \tau } , \qquad \frac{d^2}{dt^2}=\omega ^2\frac{\partial ^2}{\partial \theta ^2} - 2\varepsilon ^2\omega \frac{\partial ^2}{\partial \tau \partial \theta } +\varepsilon ^4\frac{\partial ^2}{\partial \tau ^2}. \end{aligned} \end{aligned}$$
(22)

Considering the above relations, we obtain the following equation as power series of \(\varepsilon \)

$$\begin{aligned} \begin{aligned}&\left( -2\,\cos \left( { k_{1}} \right) {{ u_{01}}}^{2}+2\,\cos \left( { k_{1}} \right) { C_{r}}\,{\omega }^{2}-2\,{ C_{r}}\,{ \omega }^{2}+2\,{{ u_{02}}}^{2}\right. \\&\quad \left. +2\,{{ u_{01}}}^{2}-{\omega }^{2}-2\,{{ u_{02}}}^{2}\cos \left( { k_{2}} \right) \right) A \left( x,y,\tau \right) \varepsilon \exp \left( i\theta \right) \\&\quad -2\,i \left( 2\,{ C_{r}}\,\omega \,{ V_{g1}}\,\cos \left( { k_{1}} \right) +\sin \left( { k_{1}} \right) {{ u_{01}}}^{2}-\sin \left( { k_{1}} \right) { C_{r}}\,{\omega }^{2}\right. \\&\quad \left. -\omega \,{ V_{g1}}-2\,{ C_{r}}\,\omega \,{ V_{g1}} \right) {\frac{\partial A(x,y,\tau )}{\partial x}}\varepsilon ^2\exp \left( i\theta \right) \\&\quad -2\,i \left( 2\,{ C_{r}}\,\omega \,{ V_{g2}} \,\cos \left( { k_{1}} \right) +{{ u_{02}}}^{2}\sin \left( { k_{2}} \right) -2\,{ C_{r}}\,\omega \,{ V_{g2}}-\omega \,{ V_{g2}} \right) { \frac{\partial A(x,y,\tau )}{\partial y}}\varepsilon ^2\exp \left( i\theta \right) \\&\quad +2\,i \left( 2\,\cos \left( { k_{1}} \right) { C_{r}}-1-2\,{ C_{r}} \right) \omega \,{\frac{\partial A(x,y,\tau )}{\partial \tau }}\varepsilon ^3\exp \left( i\theta \right) -3\,\beta \,{\omega }^{2} A(x,y,\tau )^{2} \\&\quad A^{*}(x,y,\tau )\varepsilon ^3\exp \left( i\theta \right) \\&\quad + \left( \cos \left( { k_{1}} \right) { C_{r}}\,{\omega }^{2 }-2\,\cos \left( { k_{1}} \right) { C_{r}}\,{{ V_{g1}}}^{2}-\cos \left( {k_{1}} \right) {{ u_{01}}}^{2}\right. \\&\quad \left. +2\,{C_{r}}\,{{V_{g1}}}^{2 }+4\,{ C_{r}}\,\omega \,{V_{g1}}\,\sin \left( { k_{1}} \right) +{{ V_{g1}}}^{2} \right) {\frac{\partial ^{2}A(x,y,\tau )}{\partial {x}^{2}}}\varepsilon ^3\exp \left( i\theta \right) \\&\quad + \left( -2\,{ C_{r}}\,{{ V_{g2}}}^{2}\cos \left( { k_{1}} \right) +2\,{ C_{r}}\,{{ V_{g2}}}^{2}+{{ V_{g2}}}^{ 2}-{{ u_{02}}}^{2}\cos \left( { k_{2}} \right) \right) \frac{ \partial ^{2}A( x,y,\tau )}{\partial {y}^{2}}\varepsilon ^3\exp \left( i\theta \right) \\&\quad -2\,{ V_{g2}}\, \left( -2\,{ C_{r}}\,\omega \,\sin \left( { k_{1}} \right) +2 \,{ C_{r}}\,{ V_{g1}}\,\cos \left( { k_{1}} \right) -2\,{ C_{r}}\, { V_{g1}}-{ V_{g1}} \right) \frac{\partial ^{2}A( x,y,\tau )}{\partial y\partial x}\varepsilon ^3\exp \left( i\theta \right) \\&\quad +\left( 2\alpha \omega ^{2}A^{*}(x,y,\tau )C( x,y,\tau ) +2\alpha \omega ^{2}A(x,y,\tau ) { B} \left( x,y,\tau \right) \right) \varepsilon ^3\exp \left( i\theta \right) \\&\quad +\left( -2\,{{ u_{02}}}^{2}\cos \left( 2\,{ k_{2}} \right) +2\,{{ u_{01}}}^{2}+2\,{{ u_{02}}}^{2}+8\,\cos \left( 2\,{ k_{1}} \right) { C_{r}}\,{\omega }^{2}\right. \\&\quad \left. -2\,\cos \left( 2\,{ k_{1}} \right) {{ u_{01}}}^{2} -8\,{ C_{r}}\,{\omega }^{2}-4\,{\omega }^{2} \right) { C} \left( x,y,\tau \right) \varepsilon ^2\exp \left( i2\theta \right) \\&\quad +\left( 4\,\alpha \,{\omega }^{2}\right) \varepsilon ^2 \left( A \left( x,y,\tau \right) \right) ^{2}\exp \left( i2\theta \right) +B \left( x,y,\tau \right) \varepsilon ^2\exp \left( i0\theta \right) +\cdots . \end{aligned} \end{aligned}$$
(23)

Using this last equation, it follows that \(A(x,y,\tau )\) verifies the two-dimensional nonlinear Schrödinger Eq. (7) with coefficients given by Eq. (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndecfo, J.E., Deffo, G.R., Yamgoué, S.B. et al. Alternate backward and forward waves in a coupled nonlinear transmission line. Eur. Phys. J. Plus 135, 57 (2020). https://doi.org/10.1140/epjp/s13360-019-00080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00080-5

Navigation