Skip to main content
Log in

Decaying localized structures beyond Turing space in an activator–inhibitor system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We perform numerical simulations beyond Turing space in an activator–inhibitor system involving quadratic and cubic nonlinearities . We show that while all the three fixed points of the system are stable nodes, it exhibits spatially stable patterns as diverse as labyrinths, worms, negatons, and combination of them. The transition among the patterns is found to be dependent on the relative strength (h) of quadratic and cubic couplings. The labyrinths and worms are formed for small values of h while stable negatons are obtained for \(0.0891\le h\le 0.1106\). The negatons start showing decaying behavior for \(h\ge 0.1135\) and, finally they vanish at random positions by emitting remnant solitary waves, yielding a pattern of stable concentric rings. The spatial extension of the concentric rings is found to depend on the initial concentration profile of the decaying negatons. The resulting concentric rings do not decay further due to limitation of numerical precision. We also find that the transient period for each pattern also depends on h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.W. Thompson, On Growth and Form (Cambridge University Press, Cambridge, 1961)

    Google Scholar 

  2. A.M. Turing, On the chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.D. Murray, A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199 (1981)

    Article  MathSciNet  Google Scholar 

  4. J.D. Murray, On pattern formation mechanism for lepidopteran wing patterns and mammalian coat markings. Philos. trans. R. Soc. Lond. B 295, 473–496 (1981)

    Article  ADS  Google Scholar 

  5. J.B.L. Bard, A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol. 93, 363–385 (1981)

    Article  MathSciNet  Google Scholar 

  6. J.D. Murray, M.R. Myerscough, Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339–360 (1991)

    Article  Google Scholar 

  7. S. Kondo, R. Asai, A reaction-diffusion wave on the marine angelfish pomacanthus. Nature 376, 765–768 (1995)

    Article  ADS  Google Scholar 

  8. R. Asai et al., Zebrafish leopard gene as a component of the putative reaction-diffusion system. Mech. Dev. 89, 87–92 (1999)

    Article  Google Scholar 

  9. J.D. Murray, Mathematical Biology, vol. I & II, 3rd edn. (Springer, New York, 2002)

    Book  Google Scholar 

  10. H. Shoji et al., Origin of directionality in the fish stripe pattern. Dev. Dyn. 226, 627–633 (2003)

    Article  Google Scholar 

  11. R.A. Barrio et al., Modeling the skin pattern of fishes. Phys. Rev. E 79, 031908 (2009)

    Article  ADS  Google Scholar 

  12. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990)

    Article  ADS  Google Scholar 

  13. I. Lengyel, I.R. Epstein, A chemical approach to designing turing patterns in reaction-diffusion systems. Proc. Natl. Acad. Sci. USA 89, 3977 (1992)

    Article  ADS  Google Scholar 

  14. I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, New York, 1998)

    Google Scholar 

  15. V.K. Vanag, I.R. Epstein, Inwardly rotating spiral waves in a reaction-diffusion system. Science 294, 835 (2001)

    Article  ADS  Google Scholar 

  16. J. Temmyo, R. Notzel, T. Tamamura, Semiconductor nanostructures formed by the Turing instability. Appl. Phys. Lett. 71, 1086 (1997)

    Article  ADS  Google Scholar 

  17. E. Ammelt, Y.A. Astrov, H.G. Purwins, Hexagon structures in a two-dimensional dc-driven gas discharge system. Phys. Rev. E 58, 7109 (1998)

    Article  ADS  Google Scholar 

  18. D. Walgraef, N.M. Ghoniem, Effects of glissile interstitial clusters on microstructure self-organization in irradiated materials. Phys. Rev. B 67, 064103 (2003)

    Article  ADS  Google Scholar 

  19. R.A. Barrio, C. Varea, J.L. Araǵon, P.K. Maini, A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 61, 483–505 (1999)

    Article  Google Scholar 

  20. T. Leppnen, M. Karttunen, R.A. Barrio, K. Kaski, Morphological transitions and bistability in Turing systems. Phys. Rev. E 70, 066202 (2004)

    Article  ADS  Google Scholar 

  21. R.A. Barrio et al., Size-dependent symmetry breaking in models for morphogenesis. Phys. D 168, 61 (2002)

    Article  MathSciNet  Google Scholar 

  22. J.L. Aragón et al., Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. R.T. Liu, S.S. Liaw, P.K. Maini, Two-stage Turing model for generating pigment patterns on the Leopard and the Jaguar. Phys. Rev. E 74, 011914 (2006)

    Article  ADS  Google Scholar 

  24. J.T. Schneider, Perfect stripes from a general Turing model in different geometries, M.Sc. Thesis, Boise State University (2012)

  25. T.E. Woolley et al., Analysis of stationary droplets in a generic Turing reaction-diffusion system. Phys. Rev. E 82, 051929 (2010)

    Article  ADS  Google Scholar 

  26. A. L-Dur\(\acute{\text{a}}\)n, et al., The interplay between phenotypic and ontogenetic plasticities can be assessed using reaction-diffusion models. J. Biol. Phys. 43, 247 (2017)

  27. D. Hernández et al., Self-similar Turing patterns: An anomalous diffusion consequence. Phys. Rev. E 95, 022210 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Talukdar, K. Dutta, Transition of spatial patterns in an interacting Turing system. J. Stat. Phys. 174, 351 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Varea, D. Hernández, R.A. Barrio, Soliton behaviour in a bistable reaction diffusion model. J. Math. Biol. 54, 797 (2007)

    Article  MathSciNet  Google Scholar 

  30. K. Kytta, K. Kasaki, R.A. Barrio, Complex Turing patterns in non-linearly coupled systems. Phys. A 385, 105 (2007)

    Article  Google Scholar 

  31. M. Dolnik, I. Berenstein, A.M. Zhabotinsky, I.R. Epstein, Spatial periodic forcing of Turing structures. Phys. Rev. Lett. 87, 238301 (2001)

    Article  ADS  Google Scholar 

  32. M. Karttunen, N. Provatas, T. Ala-Nissila, M. Grant, Nucleation, growth, and scaling in slow combustion. J. Stat. Phys. 90, 1401 (1998)

    Article  ADS  Google Scholar 

  33. L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. Phys. Rev. Lett. 88, 208303 (2002)

    Article  ADS  Google Scholar 

  34. V.K. Vanag, I.R. Epstein, Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Dutta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, D., Dutta, K. Decaying localized structures beyond Turing space in an activator–inhibitor system. Eur. Phys. J. Plus 135, 53 (2020). https://doi.org/10.1140/epjp/s13360-019-00063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00063-6

Navigation