Skip to main content

Advertisement

Log in

Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Small space thermoelectric cooler is suitable for submarine air conditioning, biological temperature control, laboratory freezer and other fields. A new method based on intrinsic parameter description is proposed for thermoelectric refrigeration system independent of the module and heat sink geometric parameters, namely the refrigeration rate density and equivalent area resistance method. The studies show that the refrigeration rate will reduce if the heatsink cannot match the packing factor of the modules. Both high and low current can meet the requirement of small temperature difference. A high current leads to a large cooling capacity; while a low current leads to a high refrigeration efficiency. If large temperature difference is required, high current must be used. The maximum refrigeration temperature difference is about 12 °C, 22 °C and 27 °C when the current is 0.4 A, 0.8 A and 1.2 A, respectively. It is suitable to select a fin height of about 50 mm from the viewpoint of economic efficiency and portability of the cooler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.J. Joo, H.S. Lee, J.E. Lee, J. Jang, Thermoelectric properties of higher manganese silicide films deposited by radio frequency magnetron co-sputtering. J. Alloy. Compd. 747, 603–610 (2018)

    Google Scholar 

  2. D.Q. Mei, H. Wang, Z.H. Yao, Y. Li, Ultrasonic-assisted hot pressing of Bi2Te3-based thermoelectric materials. Mater. Sci. Semicond. Process. 87, 126–133 (2018)

    Google Scholar 

  3. P. Gokhale, B. Loganathan, J. Crowe, A. Date, A. Date, Development of flexible thermoelectric cells and performance investigation of thermoelectric materials for power generation. Energy Proced. 110, 281–285 (2017)

    Google Scholar 

  4. J.R. Isern-Lozano, J.S. Lim, I. Grosu, R. López, M. Crisan, D. Sánchez, Thermoelectric transport through interacting quantum dots in graphene. Eur. Phys. J. Spec. Top. 227(15), 1969–1979 (2019)

    Google Scholar 

  5. K. Atik, Thermoeconomic Optimization in the Design of Thermoelectric Cooler (Karabuk, Turkiye, 2009)

    Google Scholar 

  6. S.B. Riffat, X.L. Ma, Improving the coefficient of performance of thermoelectric cooling systems: a review. Int. J. Energy Res. 28(9), 753–768 (2004)

    Google Scholar 

  7. W. He, G. Zhang, X.X. Zhang, J. Ji, G.Q. Li, X.D. Zhao, Recent development and application of thermoelectric generator and cooler. Appl. Energy 143, 1–25 (2015)

    ADS  Google Scholar 

  8. A. Martinez, D. Astrain, A. Rodriguez, P. Aranguren, Advanced computational model for Peltier effect based refrigerators. Appl. Therm. Eng. 95, 339–347 (2016)

    Google Scholar 

  9. E.E. Rego, R.C. de Oliveira, C.O.L. do Valle, H.L. Lee, Thermoelectric dispatch: from utopian planning to reality. Energy Policy. 106, 266–277 (2017)

    Google Scholar 

  10. B.J. Huang, C.J. Chin, C.L. Duang, A design method of thermoelectric cooler. Int. J. Refrig. 23(3), 208–218 (2000)

    Google Scholar 

  11. X.C. Xuan, K.C. Ng, C. Yap et al., Optimization and thermodynamic understanding of conduction-cooled Peltier current leads. Cryogenics 42(2), 141–145 (2002)

    ADS  Google Scholar 

  12. X.C. Xuan, Investigation of thermal contact effect on thermoelectric coolers. Energy Convers. Manag. 44(3), 399–410 (2003)

    Google Scholar 

  13. R. Chein, G.M. Huang, Thermoelectric cooler application in electronic cooling. Appl. Therm. Eng. 24(6), 2207–2217 (2004)

    Google Scholar 

  14. Y. Cheng, W. Lin, Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms. Appl. Therm. Eng. 25(13), 2983–2997 (2005)

    ADS  Google Scholar 

  15. K.H. Lee, O.J. Kim, Analysis on the cooling performance of the thermoelectric micro-cooler. Int. J. Heat Mass Transf. 50(9), 1982–1992 (2007)

    MATH  Google Scholar 

  16. F.L. Tan, S.C. Fok, Development of a multi-vendor software to size and select TEC. Appl. Therm. Eng. 28(6), 835–846 (2008)

    ADS  Google Scholar 

  17. F.L. Tan, S.C. Fok, Methodology on sizing and selecting thermoelectric cooler from different manufacturers in cooling system design. Energy Convers. Manag. 49(6), 1715–1723 (2008)

    Google Scholar 

  18. H.S. Huang, Y.C. Weng, Y.W. Chang et al., Thermoelectric water-cooling device applied to electronic equipment. Int. J. Heat Mass Transf. 37(2), 140–146 (2010)

    Google Scholar 

  19. W. Tipsaenporm, M. Rungsiyopas, C. Lertsatitthanakorn, Thermodynamic analysis of a compact thermoelectric air conditioner. J. Electron. Mater. 43(6), 1804–1808 (2014)

    ADS  Google Scholar 

  20. K. Pietrzyk, B. Ohara, T. Watson et al., Thermoelectric module design strategy for solid-state refrigeration. Energy 114, 823–832 (2016)

    Google Scholar 

  21. H.S. Dizaji, S. Jafarmadar, S. Khalilarya et al., An exhaustive experimental study of a novel air-water based thermoelectric cooling unit. Appl. Energy 181, 357–366 (2016)

    Google Scholar 

  22. M.J. Huang, P.K. Chou, M.C. Lin, Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect. Sens. Actuators A 126(1), 122–128 (2006)

    Google Scholar 

  23. G. Fraisse, M. Lazard, C. Goupil, Study of a thermoelement’s behaviour through a modelling based on electrical analogy. Int. J. Heat Mass Transf. 53(17), 3503–3512 (2010)

    MATH  Google Scholar 

  24. J.Y. Liu, C.D. Wen, Examination of the cooling performance of a two-stage thermoelectric cooler considering the Thomson effect. Numer. Heat Transf. Part A Appl. 60(6), 519–542 (2011)

    ADS  Google Scholar 

  25. C.Y. Du, C.D. Wen, Experimental investigation and numerical analysis for one- stage thermoelectric cooler considering Thomson effect. Int. J. Heat Mass Transf. 54(23/24), 4875–4884 (2011)

    MATH  Google Scholar 

  26. W.H. Chen, C.Y. Liao, C.I. Hung, A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Appl. Energy 89(1), 464–473 (2012)

    Google Scholar 

  27. G. Fraisse, J. Ramousse, D. Sgorlon et al., Comparison of different modeling approaches for thermoelectric elements. Energy Convers. Manag. 65, 351–356 (2013)

    Google Scholar 

  28. S. Manikandan, S.C. Kaushik, Energy and exergy analysis of an annular thermoelectric cooler. Energy Convers. Manag. 106, 804–814 (2015)

    Google Scholar 

  29. P.E.R. Ortega, M.A. Olivares-Robles, Analysis of a hybrid thermoelectric microcooler: Thomson heat and geometric optimization. Entropy 19(7), 312 (2017)

    ADS  Google Scholar 

  30. L.G. Chen, F.K. Meng, F.R. Sun, Thermodynamic analyses and optimizations for thermoelectric devices: the state of the arts. Sci China Technol Sci 59(3), 442–455 (2016)

    Google Scholar 

  31. S.M. Pourkiaei, M.H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, M.A. Yazdi, R. Kumar, Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy 186, 115849 (2019)

    Google Scholar 

  32. H. Ouerdane, Y. Apertet, C. Goupil, P. Lecoeur, Continuity and boundary conditions in thermodynamics: from Carnot’s efficiency to efficiencies at maximum power. Eur. Phys. J. Spec. Top. 224(5), 839–864 (2015)

    Google Scholar 

  33. B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Thermodynamics for processes in finite time. Acc. Chem. Res. 17(8), 266–271 (1984)

    Google Scholar 

  34. A. Bejan, Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    ADS  Google Scholar 

  35. L.G. Chen, C. Wu, F.R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4), 327–359 (1999)

    ADS  MATH  Google Scholar 

  36. L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science Publishers, New York, 2004)

    Google Scholar 

  37. B. Andresen, Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 50(12), 2690–2704 (2011)

    Google Scholar 

  38. E. Açıkkalp, N. Caner, Application of exergetic sustainable index to the quantum irreversible Diesel refrigerator cycles for 1D box system. Eur. Phys. J. Plus 130, 73 (2015)

    Google Scholar 

  39. E. Açıkkalp, N. Caner, Performance assessment of an irreversible nano Brayton cycle operating with Maxwell–Boltzmann gas. Eur. Phys. J. Plus 130, 93 (2015)

    MATH  Google Scholar 

  40. M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz, Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell–Boltzmann gas. Eur. Phys. J. Plus 130, 190 (2015)

    Google Scholar 

  41. S.J. Xia, L.G. Chen, F.R. Sun, Maximum cycle work output optimization for generalized radiative law Otto cycle engines. Eur. Phys. J. Plus 131(11), 394 (2016)

    Google Scholar 

  42. E. Açıkkalp, Analysis of a Brownian heat engine with ecological criteria. Eur. Phys. J. Plus 131(12), 426 (2016)

    Google Scholar 

  43. H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal design for a rectangular body with nonuniform heat generation. Eur. Phys. J. Plus 131(8), 274 (2016)

    Google Scholar 

  44. J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Exploring the optimal performance of irreversible single resonance energy selective electron refrigerator. Eur. Phys. J. Plus 131(5), 149 (2016)

    Google Scholar 

  45. S. Sieniutycz, Thermodynamic Approaches in Engineering Systems (Elsevier, Oxford, 2016)

    Google Scholar 

  46. Y.L. Ge, L.G. Chen, F.R. Sun, Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy 18(4), 139 (2016)

    ADS  Google Scholar 

  47. L.G. Chen, Z.M. Ding, J.L. Zhou, W.H. Wang, F.R. Sun, Thermodynamic performance optimization for an irreversible vacuum thermionic generator. Eur. Phys. J. Plus 132(7), 293 (2017)

    Google Scholar 

  48. S.J. Xia, L.G. Chen, Theoretical and experimental investigation of optimal capacitor charging process in RC circuit. Eur. Phys. J. Plus 132(5), 235 (2017)

    Google Scholar 

  49. Y.L. Ge, L.G. Chen, X.Y. Qin, Z.H. Xie, Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heats of working fluid. Eur. Phys. J. Plus 132(5), 209 (2017)

    ADS  Google Scholar 

  50. Z.X. Wu, L.G. Chen, Y.L. Ge, F.R. Sun, Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual–Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. Eur. Phys. J. Plus 132(5), 203 (2017)

    Google Scholar 

  51. S.J. Xia, L.G. Chen, Capital dissipation minimization for a class of complex irreversible resource exchange processes. Eur. Phys. J. Plus 132(5), 201 (2017)

    Google Scholar 

  52. Y. Yin, L.G. Chen, F. Wu, Optimal power and efficiency of quantum Stirling heat engines. Eur. Phys. J. Plus 132(1), 45 (2017)

    ADS  Google Scholar 

  53. M. Feidt, Finite Physical Dimensions Optimal Thermodynamics 1: Fundamentals (Elsevier, New York, 2017)

    Google Scholar 

  54. S.C. Kaushik, S.K. Tyagi, P. Kumar, Finite Time Thermodynamics of Power and Refrigeration Cycles (Springer, Berlin, 2018)

    Google Scholar 

  55. F.R. Tang, R. Zhang, H.C. Li, L. Bai, Understanding performance properties of chemical engines under a trade-off optimization: low-dissipation versus endoreversible model. Eur. Phys. J. Plus 133(5), 176 (2018)

    Google Scholar 

  56. W.L. Peng, Y.C. Zhang, Z.M. Yang, J.C. Chen, Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations. Eur. Phys. J. Plus 133(2), 38 (2018)

    Google Scholar 

  57. A. Ocampo-Garcia, M.A. Barranco-Jimenez, A.F. Angulo-Brown, Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines. Eur. Phys. J. Plus 133(8), 342 (2018)

    Google Scholar 

  58. J. You, L.G. Chen, Z.X. Wu, F.R. Sun, Thermodynamic performance of Dual–Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci. China Technol. Sci. 61(3), 453–463 (2018)

    Google Scholar 

  59. Y. Yin, L.G. Chen, F. Wu, Performance of quantum Stirling heat engine with numerous copies of extreme relativistic particles confined in 1D potential well. Phys. A 503, 58–70 (2018)

    MathSciNet  Google Scholar 

  60. Y. Yin, L.G. Chen, F. Wu, Performance analysis and optimization for generalized quantum Stirling refrigeration cycle with working substance of a particle confined in a general 1D potential. Phys. E 97, 57–63 (2018)

    Google Scholar 

  61. T.N.F. Roach, P. Salamon, J. Nulton, B. Andresen, B. Felts, A. Haas, S. Calhoun, N. Robinett, F.T. Rohwer, Application of finite-time and control thermodynamics to biological processes at multiple scales. J. Non-Equilib. Thermodyn. 43(3), 193–210 (2018)

    ADS  Google Scholar 

  62. Y.L. Ge, L.G. Chen, X.Y. Qin, Effect of specific heat variations on irreversible Otto cycle performance. Int. J. Heat Mass Transf. 122, 403–409 (2018)

    Google Scholar 

  63. L.G. Chen, L. Zhang, S.J. Xia, F.R. Sun, Entropy generation minimization for CO2 hydrogenation to light olefins. Energy 147, 187–196 (2018)

    Google Scholar 

  64. L.G. Chen, Y.L. Ge, X.Y. Qin, Z.H. Xie, Exergy-based ecological optimization for a four-temperature-level absorption heat pump with heat resistance, heat leakage and internal irreversibility. Int. J. Heat Mass Transf. 129, 855–861 (2019)

    Google Scholar 

  65. Z.M. Ding, L.G. Chen, Y.L. Ge, Z.H. Xie, Optimal performance regions of an irreversible energy selective electron heat engine with double resonance. Sci. China Technol. Sci. 62(3), 337–405 (2019)

    Google Scholar 

  66. S.S. Qiu, Z.M. Ding, L.G. Chen, F.K. Meng, F.R. Sun, Optimal performance regions of energy selective electron cooling devices consisting of three reservoirs. Eur. Phys. J. Plus 134(6), 273 (2019)

    Google Scholar 

  67. J.F. Shen, L.G. Chen, Y.L. Ge, F.L. Zhu, Z.X. Wu, Optimum ecological performance of irreversible reciprocating Maisotsenko–Brayton cycle. Eur. Phys. J. Plus 134(6), 293 (2019)

    Google Scholar 

  68. S. Levario-Medina, G. Valencia-Ortega, L.A. Arias-Hernandez, Thermal optimization of Curzon–Ahlborn heat engines operating under some generalized efficient power regimes. Eur. Phys. J. Plus 134(7), 348 (2019)

    Google Scholar 

  69. F.L. Zhu, L.G. Chen, W.H. Wang, Thermodynamic analysis and optimization of irreversible Maisotsenko–Diesel cycle. J. Therm. Sci. 28(4), 659–668 (2019)

    ADS  Google Scholar 

  70. L. Zhang, S.J. Xia, L.G. Chen, Y.L. Ge, C. Wang, H.J. Feng, Entropy generation rate minimization for hydrocarbon synthesis reactor from carbon dioxide and hydrogen. Int. J. Heat Mass Transf. 137, 1112–1123 (2019)

    Google Scholar 

  71. L.G. Chen, X.W. Liu, F. Wu, S.J. Xia, H.J. Feng, Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators. Phys. A Stat. Mech. Appl. 537, 122597 (2020)

    Google Scholar 

  72. L.G. Chen, X.W. Liu, F. Wu, H.J. Feng, S.J. Xia, Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators. Phys. A Stat. Mech. Appl. (2020). https://doi.org/10.1016/j.physa.2020.124140

    Article  Google Scholar 

  73. L.G. Chen, J.Z. Gong, L.W. Shen, J.Z. Gong, C. Wu, Theoretical analysis and experimental confirmation for the performance of thermoelectric refrigerator. J. Non-Equilib. Thermodyn. 26(1), 85–92 (2001)

    ADS  Google Scholar 

  74. J. Luo, L.G. Chen, F.R. Sun, C. Wu, Optimum allocation of heat transfer surface area for cooling capacity and cop optimization of a thermoelectric refrigerator. Energy Convers. Manag. 44(20), 3197–3206 (2003)

    Google Scholar 

  75. F. Gutierrez, F. Mendez, Entropy generation minimization of a thermoelectric cooler. Open Thermodyn. J. 2, 71–81 (2008)

    Google Scholar 

  76. F.K. Meng, L.G. Chen, F.R. Sun, Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys. Pol. A 120(3), 397–406 (2011)

    Google Scholar 

  77. B. Ohara, R. Sitar, J. Soares, Optimization strategies for a portable thermoelectric vaccine refrigeration system in developing communities. J. Electron. Mater. 44(6), 1614–1626 (2015)

    ADS  Google Scholar 

  78. M. Antonik, B.T. O’Connor, S. Ferguson, Performance and design comparison of a bulk thermoelectric cooler with a hybrid architecture. J. Therm. Sci. Eng. Appl. 8(2), 021022 (2016)

    Google Scholar 

  79. H.B. Tan, H. Fu, J.L. Yu, Evaluating optimal cooling temperature of a single-stage thermoelectric cooler using thermodynamic second law. Appl. Therm. Eng. 133, 845–851 (2017)

    Google Scholar 

  80. L. Zhu, J.L. Yu, Optimization of heat sink of thermoelectric cooler using entropy generation analysis. Int. J. Therm. Sci. 118, 168–175 (2017)

    Google Scholar 

  81. H.B. Tan, H. Fu, J.L. Yu, Evaluating optimal cooling temperature of a single-stage thermoelectric cooler using thermodynamic second law. Appl. Therm. Eng. 123, 845–851 (2017)

    Google Scholar 

  82. M. Ibañez-Puy, J. Bermejo-Busto, C. Martín-Gómez, M. Vidaurre-Arbizu, José A. Sacristán-Fernández, Thermoelectric cooling heating unit performance under real conditions. Appl. Energy 200, 303–314 (2017)

    Google Scholar 

  83. S. Pourhedayat, Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions. Appl. Energy 229, 364–374 (2018)

    Google Scholar 

  84. D.F. Sun, L.M. Shen, M. Sun, Y. Yao, H.X. Chen, S.P. Jin, An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers. Appl. Energy 219, 93–104 (2018)

    Google Scholar 

  85. X.D. Wang, Y.X. Huang, C.H. Cheng et al., A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 47(1), 488–497 (2012)

    Google Scholar 

  86. X.D. Wang, Q.H. Wang, J.L. Xu, Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model. Energy 65, 419–429 (2014)

    Google Scholar 

  87. S.C. Kaushik, S. Manikandan, The influence of Thomson effect in the performance optimization of a two stage thermoelectric cooler. Cryogenics 72, 57–64 (2015)

    ADS  Google Scholar 

  88. Y. Apertet, H. Ouerdane, A. Michot, C. Goupil, P. Lecoeur, On the efficiency at maximum cooling power. Europhys. Lett. 103(4), 40001 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Project nos. 11974429, 51576207, and 51579244). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Meng, F., Xie, Z. et al. Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler. Eur. Phys. J. Plus 135, 80 (2020). https://doi.org/10.1140/epjp/s13360-019-00020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00020-3

Navigation