Skip to main content
Log in

Thermodynamic geometry of Nambu–Jona Lasinio model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The formalism of Riemannian geometry is applied to study the phase transitions in Nambu–Jona Lasinio (NJL) model. Thermodynamic geometry reliably describes the phase diagram, both in the chiral limit and for finite quark masses. The different thermodynamic geometrical behavior of NJL model and of (2+1) Quantum Chromodynamics at high temperature and small baryon density gives some hints on the connection between chiral symmetry restoration/breaking and deconfinement/confinement regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Figure from Ref. [18]

Fig. 2

Figure from Ref. [18]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Ay, J. Jost, H. Van Le, L. Schwachhofer, Information Geometry, A Series of Modern Surveys in Mathematics, vol. 64 (Springer, Berlin, 2017)

    MATH  Google Scholar 

  2. S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences, vol. 194 (Springer, Berlin, 2016)

    Book  Google Scholar 

  3. M. Suzuki, Information geometry and statistical manifold. arXiv:1410.3369

  4. R.C. Rao, Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)

    MathSciNet  MATH  Google Scholar 

  5. F. Weinhold, Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 63, 2479, 2484, 2488, 2496 (1975)

    MathSciNet  Google Scholar 

  6. George Ruppeiner, Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608–1613 (1979)

    Article  ADS  Google Scholar 

  7. George Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605–659 (1995). [Erratum: Rev. Mod. Phys. 68, 313 (1996)]

    Article  ADS  MathSciNet  Google Scholar 

  8. George Ruppeiner, Anurag Sahay, Tapobrata Sarkar, Gautam Sengupta, Thermodynamic geometry, phase transitions, and the Widom line. Phys. Rev. E 86, 052103 (2012)

    Article  ADS  Google Scholar 

  9. Helge-Otmar May, Peter Mausbach, Riemannian geometry study of vapor-liquid phase equilibria and supercritical behavior of the Lennard–Jones fluid. Phys. Rev. E 85, 031201 (2012)

    Article  ADS  Google Scholar 

  10. Helge-Otmar May, Peter Mausbach, George Ruppeiner, Thermodynamic curvature for attractive and repulsive intermolecular forces. Phys. Rev. E 88, 032123 (2013)

    Article  ADS  Google Scholar 

  11. Anshuman Dey, Pratim Roy, Tapobrata Sarkar, Information geometry, phase transitions, and the Widom line: magnetic and liquid systems. Phys. A 392, 6341–6352 (2013)

    Article  MathSciNet  Google Scholar 

  12. Pankaj Chaturvedi, Anirban Das, Gautam Sengupta, Thermodynamic geometry and phase transitions of dyonic charged AdS black holes. Eur. Phys. J. C 77(2), 110 (2017)

    Article  ADS  Google Scholar 

  13. Anurag Sahay, Rishabh Jha, Geometry of criticality, supercriticality and Hawking–Page transitions in Gauss–Bonnet-AdS black holes. Phys. Rev. D 96(12), 126017 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Castorina, M. Imbrosciano, D. Lanteri, Thermodynamic geometry of strongly interacting matter. Phys. Rev. D 98(9), 096006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Paolo Castorina, Mauro Imbrosciano, Daniele Lanteri, Thermodynamic geometry and deconfinement temperature. Eur. Phys. J. Plus 134(4), 164 (2019)

    Article  Google Scholar 

  16. George Ruppeiner, Riemannian geometric approach to critical points: general theory. Phys. Rev. E 57, 5135–5145 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Widom, The critical point and scaling theory. Physica 73(1), 107–118 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  18. George Ruppeiner, Thermodynamic curvature from the critical point to the triple point. Phys. Rev. E 86, 021130 (2012)

    Article  ADS  Google Scholar 

  19. H. Janyszek, R. Mrugala, Riemannian geometry and the thermodynamics of model magnetic systems. Phys. Rev. A 39, 6515–6523 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Janyszek, R. Mrugala, Riemannian and finslerian geometry and fluctuations of thermodynamic systems. Advances in Thermodynamics, vol. 3. Nonequilibrium Theory and Extremum Principles, pp. 159–174 (1990)

  21. G. Ruppeiner, Thermodynamic curvature measures interactions. Am. J. Phys. 78, 1170 (2010)

    Article  ADS  Google Scholar 

  22. Michele Floris, Hadron yields and the phase diagram of strongly interacting matter. Nucl. Phys. A 931, 103–112 (2014)

    Article  ADS  Google Scholar 

  23. S. Das, Identified particle production and freeze-out properties in heavy-ion collisions at RHIC Beam Energy Scan program (2014) [EPJ Web Conf. 90, 08007 (2015)]

  24. L. Adamczyk et al., Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 96(4), 044904 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Patrick Steinbrecher, The QCD crossover at zero and non-zero baryon densities from Lattice QCD. Nucl. Phys. A 982, 847–850 (2019)

    Article  ADS  Google Scholar 

  26. A. Bazavov et al., The QCD equation of state to \({\cal{O}}(\mu _B^6)\) from lattice QCD. Phys. Rev. D 95(5), 054504 (2017)

    Article  ADS  Google Scholar 

  27. H. Janyszek, Riemannian geometry and stability of thermodynamical equilibrium systems. J. Phys. A Math. Gen. 23(4), 477–490 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.R. Ubriaco, The role of curvature in quantum statistical mechanics. J. Phys. Conf. Ser. 766, 012007 (2016)

    Article  Google Scholar 

  29. R. Ruppeiner, N. Dyjack, A. McAloon, J. Stoops, Solid-like features in dense vapors near the fluid critical point. J. Chem. Phys. 146, 224501 (2017)

    Article  ADS  Google Scholar 

  30. Behrouz Mirza, Hosein Mohammadzadeh, Ruppeiner geometry of anyon gas. Phys. Rev. E 78, 021127 (2008)

    Article  ADS  Google Scholar 

  31. M.R. Ubriaco, Stability and anyonic behavior of systems with m-statistics. Phys. A Stat. Mech. Appl. 392(20), 4868–4873 (2013)

    Article  Google Scholar 

  32. Anurag Sahay, Tapobrata Sarkar, Gautam Sengupta, On the thermodynamic geometry and critical phenomena of AdS black holes. JHEP 07, 082 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Ruppeiner, P. Mausbach, H.-0. May, Thermodynamic r-diagrams reveal solid-like fluid states. Phys. Lett. A 379(7), 646–649 (2015)

    Article  Google Scholar 

  34. P. Zhuang, J. Hufner, S.P. Klevansky, Thermodynamics of a quark-meson plasma in the Nambu–Jona–Lasinio model. Nucl. Phys. A 576, 525–552 (1994)

    Article  ADS  Google Scholar 

  35. T.M. Schwarz, S.P. Klevansky, G. Papp, The Phase diagram and bulk thermodynamical quantities in the NJL model at finite temperature and density. Phys. Rev. C 60, 055205 (1999)

    Article  ADS  Google Scholar 

  36. Michael Buballa, NJL model analysis of quark matter at large density. Phys. Rep. 407, 205–376 (2005)

    Article  ADS  Google Scholar 

  37. A. Barducci, R. Casalbuoni, G. Pettini, L. Ravagli, A NJL-based study of the QCD critical line. Phys. Rev. D 72, 056002 (2005)

    Article  ADS  Google Scholar 

  38. Yue Zhao, Lei Chang, Wei Yuan, Yu-xin Liu, Chiral susceptibility and chiral phase transition in Nambu–Jona–Lasinio model. Eur. Phys. J. C 56, 483–492 (2008)

    Article  ADS  Google Scholar 

  39. Aharon Casher, Chiral symmetry breaking in quark confining theories. Phys. Lett. 83B, 395–398 (1979)

    Article  ADS  Google Scholar 

  40. Tom Banks, A. Casher, Chiral symmetry breaking in confining theories. Nucl. Phys. B 169, 103–125 (1980)

    Article  ADS  Google Scholar 

  41. P. Cea, P. Castorina, Quark confinement and chiral symmetry breaking. Nuovo Cim. A 81, 567 (1984)

    Article  ADS  Google Scholar 

  42. S. Digal, E. Laermann, H. Satz, Deconfinement through chiral symmetry restoration in two flavor QCD. Eur. Phys. J. C 18, 583–586 (2001)

    Article  ADS  Google Scholar 

  43. H.T. Ding, P. Hegde, F. Karsch, A. Lahiri, S.T. Li, S. Mukherjee, P. Petreczky, Chiral phase transition of (2+1)-flavor QCD. Nucl. Phys. A 982, 211–214 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lanteri.

Appendices

NJL model with two quarks

To evaluate the scalar curvature R, one needs the derivatives of the potential \(\phi \), up to third order, which can be written in terms of the dynamical generated mass M. Therefore, the solution of the GAP equation uniquely determines all those functions. Indeed, after a straightforward calculation, one gets (a comma indicates partial derivative)

$$\begin{aligned}&\displaystyle M_{,\beta } =\frac{b_1\;M}{1-f_1-f_2\;M^2}, \end{aligned}$$
(26)
$$\begin{aligned}&\displaystyle M_{,\gamma } =\frac{g_1\;M}{1-f_1-f_2\;M^2}, \end{aligned}$$
(27)
$$\begin{aligned}&\displaystyle M_{,\beta \beta } = d\; \left[ b_3\;M+\left( b_2+f_{1,\beta }\right) M_{,\beta } + \left( b_4+2\,T\,f_2\right) M^2\,M_{,\beta }+f_3\;M\,M_{,\beta }^2 \right] , \end{aligned}$$
(28)
$$\begin{aligned}&\displaystyle M_{,\gamma \gamma } = d\;\left[ g_3\;M+\left( g_2+f_{1,\gamma }\right) M_{,\gamma } + g_4\,M^2\,M_{,\gamma }+ +f_3\;M\,M_{,\gamma }^2 \right] , \end{aligned}$$
(29)
$$\begin{aligned}&\displaystyle M_{,\beta \gamma } = d\;\left[ g_5\;M+b_2\,M_{,\gamma } + f_{1,\gamma } M_{,\beta } + g_4\,M^2\,M_{,\beta }+ f_2\;T\,M^2\,M_{,\gamma }+f_3\;M\,M_{,\beta } M_{,\gamma } \right] \nonumber \\ \end{aligned}$$
(30)

with

$$\begin{aligned}&\displaystyle d = \left( 1-f_1-f_2\;M^2\right) ^{-1}, \end{aligned}$$
(31)
$$\begin{aligned}&\displaystyle f_{1}= \kappa _M\; \int _0^\varLambda \mathrm{d}p\;\frac{p^4\;\varPsi }{E^3}, \end{aligned}$$
(32)
$$\begin{aligned}&\displaystyle f_2= \kappa _M\,\int _0^\varLambda \mathrm{d}p\;p^2\;\frac{n_-\left( 1-n_-\right) +n_+ \left( 1-n_+\right) }{T\;E^2}, \end{aligned}$$
(33)
$$\begin{aligned}&\displaystyle f_3=\kappa _M\,\int _0^\varLambda \mathrm{d}p\;p^4\;\frac{n_-\left( 1-n_-\right) +n_+ \left( 1-n_+\right) }{T\;E^4}, \end{aligned}$$
(34)
$$\begin{aligned}&\displaystyle b_1 = \kappa _M\,\int _0^\varLambda \mathrm{d}p\;p^2\;\left[ n_-\left( 1-n_-\right) +n_+ \left( 1-n_+\right) \right] , \end{aligned}$$
(35)
$$\begin{aligned}&\displaystyle b_2 = \kappa _M\,\int _0^\varLambda \mathrm{d}p\;p^4\;\frac{\varPsi _{\beta }}{E^3}, \end{aligned}$$
(36)
$$\begin{aligned}&\displaystyle b_3= \kappa _M\int _0^\varLambda \mathrm{d}p p^2\;\left[ n_{-,\beta }\left( 1-2n_-\right) +n_{+,\beta } \left( 1-2n_+\right) \right] , \end{aligned}$$
(37)
$$\begin{aligned}&\displaystyle b_4= \kappa _M\int _0^\varLambda \mathrm{d}p p^2\;\frac{n_{-,\beta }\left( 1-2n_-\right) +n_{+,\beta } \left( 1-2n_+\right) }{T\;E^2}, \end{aligned}$$
(38)
$$\begin{aligned}&\displaystyle g_1 = \kappa _M\,\int _0^\varLambda \mathrm{d}p\;p^2\;\frac{n_- \left( 1-n_-\right) - n_+\left( 1-n_+\right) }{E}, \end{aligned}$$
(39)
$$\begin{aligned}&\displaystyle g_2 = \kappa _M\,\int _0^\varLambda \mathrm{d}p\;p^4\;\frac{\varPsi _{\gamma }}{E^3}, \end{aligned}$$
(40)
$$\begin{aligned}&\displaystyle g_3= \kappa _M\int _0^\varLambda \mathrm{d}p p^2\;\frac{n_{-,\gamma }\left( 1-2n_-\right) -n_{+,\gamma } \left( 1-2n_+\right) }{E}, \end{aligned}$$
(41)
$$\begin{aligned}&\displaystyle g_4= \kappa _M\int _0^\varLambda \mathrm{d}p p^2\;\frac{n_{-,\gamma }\left( 1-2n_-\right) +n_{+,\gamma } \left( 1-2n_+\right) }{T\;E^2}, \end{aligned}$$
(42)
$$\begin{aligned}&\displaystyle g_5= \kappa _M\int _0^\varLambda \mathrm{d}p p^2\;\left[ n_{-,\gamma }\left( 1-2n_-\right) +n_{+,\gamma } \left( 1-2n_+\right) \right] , \end{aligned}$$
(43)
$$\begin{aligned}&\displaystyle \kappa _M = 2\;G\;\frac{N_\mathrm{c}\,N_\mathrm{f}}{\pi ^2} \end{aligned}$$
(44)

and \(n{\pm }\) in Eq. (16).

By deriving Eqs. (24) and (11) and defining

$$\begin{aligned} \kappa _\varOmega = \frac{\kappa _M}{2\,G}, \end{aligned}$$
(45)

one gets

$$\begin{aligned}&\displaystyle \phi _{,\beta } = \kappa _\varOmega \int _0^\varLambda \mathrm{d}p\,p^2\,E\,\varPsi -\frac{\left( M-m\right) ^2}{4\,G}, \end{aligned}$$
(46)
$$\begin{aligned}&\displaystyle \phi _{,\gamma } = \kappa _\varOmega \int _0^\varLambda \mathrm{d}p\,p^2\,\left( n_+ - n_-\right) . \end{aligned}$$
(47)

The calculation of second- and third-order derivatives is straightforward.

Finally, the two-flavor chiral susceptibility, \(\chi \), is defined as [38]

$$\begin{aligned} \chi ^{2f} = \frac{\partial M}{\partial m} = \frac{1}{1 - f_1 - f_2\;M^2} = \frac{M_{,\beta }}{b_1\;M} = \frac{M_{,\gamma }}{g_1\;M}. \end{aligned}$$
(48)

Three flavors

In three-flavor systems, the derivatives of the dynamically generated mass \(M_u=M_d\) and \(M_s\) are

$$\begin{aligned}&{\left\{ \begin{array}{ll} \displaystyle M_{u,\beta }\left( \delta - b_u\,M_u\,\epsilon \right) = a_u\,\epsilon - M_{s,\beta }\,\zeta \\ \\ \displaystyle M_{s,\beta } = \frac{\left( a_s\,\theta - a_u\,\lambda \right) \left( \delta - b_u\,M_u\,\epsilon \right) - a_u\,\epsilon \,b_u\,\lambda \,M_u}{\left( \ \eta -b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) - b_u\,\lambda \,M_u\,\zeta } \end{array}\right. }, \end{aligned}$$
(49)
$$\begin{aligned}&{\left\{ \begin{array}{ll} \displaystyle M_{u,\gamma }\left( \delta - b_u\,M_u\,\epsilon \right) = c_u\,\epsilon - M_{s,\gamma }\,\zeta \\ \\ \displaystyle M_{s,\gamma } = \frac{\left( c_s\,\theta - c_u\,\lambda \right) \left( \delta - b_u\,M_u\,\epsilon \right) - c_u\,\epsilon \,b_u\,\lambda \,M_u}{\left( \ \eta -b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) - b_u\,\lambda \,M_u\,\zeta } \end{array}\right. }, \end{aligned}$$
(50)
$$\begin{aligned}&{\left\{ \begin{array}{ll} \displaystyle M_{u,\beta \beta }\left( \delta - b_u\,M_u\,\epsilon \right) = d_u\,\epsilon + A_{u,\beta }\,\epsilon _{,\beta }- \left( M_{u,\beta }\delta _{,\beta }+M_{s,\beta }\zeta _{,\beta }+\epsilon \,D_{u,\beta }\,M_u\,M_{u,\beta }\right) - M_{s,\beta \beta }\,\zeta \\ \\ \displaystyle \begin{aligned} M_{s,\beta \beta } = &{} \frac{\left( d_s\,\theta -d_u\,\lambda + A_{s,\beta }\,\theta _{,\beta }-A_{u,\beta }\,\lambda _{,\beta } + \lambda \,D_{u,\beta }\,M_u\,M_{u,\beta } - \theta \,D_{s,\beta }\,M_s\,M_{s,\beta }\right) \left( \delta - b_u\,M_u\,\epsilon \right) }{ \left( \eta - b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) -\zeta \,\lambda \,b_u\,M_u}\\ &{}- \lambda \,b_u\,M_u\,\frac{\left[ d_u\,\epsilon + A_{u,\beta }\,\epsilon _{,\beta }- \left( M_{u,\beta }\delta _{,\beta }+M_{s,\beta }\zeta _{,\beta }+\epsilon \,D_{u,\beta }\,M_u\,M_{u,\beta }\right) \right] }{ \left( \eta - b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) -\zeta \,\lambda \,b_u\,M_u } \end{aligned} \end{array}\right. } , \end{aligned}$$
(51)
$$\begin{aligned}&{\left\{ \begin{array}{ll} \displaystyle M_{u,\gamma \gamma }\left( \delta - b_u\,M_u\,\epsilon \right) = e_u\,\epsilon + A_{u,\gamma }\,\epsilon _{,\gamma }- \left( M_{u,\gamma }\delta _{,\gamma }+M_{s,\gamma }\zeta _{,\gamma }+\epsilon \,D_{u,\gamma }\,M_u\,M_{u,\gamma }\right) - M_{s,\gamma \gamma }\,\zeta \\ \\ \displaystyle \begin{aligned} M_{s,\gamma \gamma } = &{} \frac{\left( e_s\,\theta -e_u\,\lambda + A_{s,\gamma }\,\theta _{,\gamma }-A_{u,\gamma }\,\lambda _{,\gamma } + \lambda \,D_{u,\gamma }\,M_u\,M_{u,\gamma } - \theta \,D_{s,\gamma }\,M_s\,M_{s,\gamma }\right) \left( \delta - b_u\,M_u\,\epsilon \right) }{ \left( \eta - b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) -\zeta \,\lambda \,b_u\,M_u} \\ &{}- \lambda \,b_u\,M_u\,\frac{\left[ e_u\,\epsilon + A_{u,\gamma }\,\epsilon _{,\gamma }- \left( M_{u,\gamma }\delta _{,\gamma }+M_{s,\gamma }\zeta _{,\gamma }+\epsilon \,D_{u,\gamma }\,M_u\,M_{u,\gamma }\right) \right] }{ \left( \eta - b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) -\zeta \,\lambda \,b_u\,M_u } \end{aligned} \end{array}\right. }\nonumber \\ \end{aligned}$$
(52)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle M_{u,\beta \gamma }\left( \delta - b_u\,M_u\,\epsilon \right) = f_u\,\epsilon + A_{u,\beta }\,\epsilon _{,\gamma }- \left( M_{u,\beta }\delta _{,\gamma }+M_{s,\beta }\zeta _{,\gamma }+\epsilon \,D_{u,\beta }\,M_u\,M_{u,\gamma }\right) - M_{s,\beta \gamma }\,\zeta \\ \\ \displaystyle \begin{aligned} M_{s,\beta \gamma } = &{} \frac{\left( f_s\,\theta -f_u\,\lambda + A_{s,\beta }\,\theta _{,\gamma }-A_{u,\beta }\,\lambda _{,\gamma } + \lambda \,D_{u,\beta }\,M_u\,M_{u,\gamma } - \theta \,D_{s,\beta }\,M_s\,M_{s,\gamma }\right) \left( \delta - b_u\,M_u\,\epsilon \right) }{ \left( \eta - b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) -\zeta \,\lambda \,b_u\,M_u} \\ &{}- \lambda \,b_u\,M_u\,\frac{\left[ f_u\,\epsilon + A_{u,\beta }\,\epsilon _{,\gamma }- \left( M_{u,\beta }\delta _{,\gamma }+M_{s,\beta }\zeta _{,\gamma }+\epsilon \,D_{u,\beta }\,M_u\,M_{u,\gamma }\right) \right] }{ \left( \eta - b_s\,M_s\,\theta \right) \left( \delta - b_u\,M_u\,\epsilon \right) -\zeta \,\lambda \,b_u\,M_u } \end{aligned} \end{array}\right. } ,\nonumber \\ \end{aligned}$$
(53)

where

$$\begin{aligned}&\displaystyle a_f = \frac{N_\mathrm{c}}{\pi ^2} \int _0^\varLambda \mathrm{d}p\, p^2 \left[ n_{-f}\left( 1-n_{-f} \right) + n_{+f}\left( 1-n_{+f} \right) \right] , \end{aligned}$$
(54)
$$\begin{aligned}&\displaystyle b_f = \frac{N_\mathrm{c}}{\pi ^2} \int _0^\varLambda \mathrm{d}p\, p^2 \frac{ n_{-f}\left( 1-n_{-f} \right) + n_{+f}\left( 1-n_{+f} \right) }{T\;E^2_f}, \end{aligned}$$
(55)
$$\begin{aligned}&\displaystyle c_f = \frac{N_\mathrm{c}}{\pi ^2} \int _0^\varLambda \mathrm{d}p\, p^2 \frac{ n_{-f}\left( 1-n_{-f} \right) - n_{+f}\left( 1-n_{+f} \right) }{E_f}, \end{aligned}$$
(56)
$$\begin{aligned} d_f= & {} \frac{N_\mathrm{c}}{\pi ^2} \int _0^\varLambda \mathrm{d}p\; p^2 \left\{ \left( \frac{2\,M\,M_{,\beta }}{E^2} +p^2\;\frac{M^2_{,\beta }}{T\,E^4}\right) \right. \nonumber \\&\times \left[ n_{-f}\left( 1-n_{-f} \right) + n_{+f}\left( 1-n_{+f} \right) \right] \nonumber \\&+\left. \left( 1 +\frac{M\,M_{,\beta }}{T\,E^2}\right) \left[ \left( 1-2\,n_{-f} \right) n_{-f,\beta } + \left( 1-2\,n_{+f} \right) n_{+f,\beta } \right] \right\} ,\end{aligned}$$
(57)
$$\begin{aligned} e_f= & {} \frac{N_\mathrm{c}}{\pi ^2} \int _0^\varLambda \mathrm{d}p\; p^2\left\{ p^2\;\frac{M^2_{,\gamma }}{T\,E^4}\left[ n_{-f}\left( 1-n_{-f} \right) + n_{+f}\left( 1-n_{+f} \right) \right] \right. \nonumber \\&+ \frac{M\,M_{,\gamma }}{T\,E^2}\left[ \left( 1-2\,n_{-f} \right) n_{-f,\gamma } + \left( 1-2\,n_{+f} \right) n_{+f,\gamma } \right] \nonumber \\&\left. + \frac{\left( 1-2\,n_{-f} \right) n_{-f,\gamma } - \left( 1-2\,n_{+f} \right) n_{+f,\gamma } }{E} \right\} , \end{aligned}$$
(58)
$$\begin{aligned} f_f= & {} \frac{N_\mathrm{c}}{\pi ^2} \int _0^\varLambda \mathrm{d}p\; p^2\left\{ \left( \frac{M\,M_{,\gamma }}{E^2} +p^2\;\frac{M_{,\beta }M_{,\gamma }}{T\,E^4}\right) \right. \nonumber \\&\times \left[ n_{-f}\left( 1-n_{-f} \right) + n_{+f}\left( 1-n_{+f} \right) \right] \nonumber \\&\quad + \left( 1 +\frac{M\,M_{,\beta }}{T\,E^2}\right) \left. \left[ \left( 1-2\,n_{-f} \right) n_{-f,\gamma } + \left( 1-2\,n_{+f} \right) n_{+f,\gamma } \right] \right\} , \end{aligned}$$
(59)
$$\begin{aligned}&\displaystyle A_{f,\beta }=a_f + b_f\;M_f\,M_{f,\beta }, \end{aligned}$$
(60)
$$\begin{aligned}&\displaystyle A_{f,\gamma }=c_f + b_f\;M_f\,M_{f,\gamma }, \end{aligned}$$
(61)
$$\begin{aligned}&\displaystyle C_{f,\beta \beta }=d_f + b_f\;M_f\,M_{f,\beta \beta }, \end{aligned}$$
(62)
$$\begin{aligned}&\displaystyle C_{f,\gamma \gamma }=e_f + b_f\;M_f\,M_{f,\gamma \gamma }, \end{aligned}$$
(63)
$$\begin{aligned}&\displaystyle C_{f,\beta \gamma }=f_f + b_f\;M_f\,M_{f,\beta \gamma }, \end{aligned}$$
(64)
$$\begin{aligned}&\displaystyle B(M_u,M_s) = 4\,G-2\,\frac{K^2}{G}\;u^2-2\,K\,s, \end{aligned}$$
(65)
$$\begin{aligned}&\displaystyle \delta (M_u,M_s) = \left( 1 - F_{1u}\,B\right) , \end{aligned}$$
(66)
$$\begin{aligned}&\displaystyle \zeta (M_u,M_s) = 2\,K\,u, \end{aligned}$$
(67)
$$\begin{aligned}&\displaystyle \epsilon (M_u,M_s)= B\,M_u, \end{aligned}$$
(68)
$$\begin{aligned}&\displaystyle \eta (M_u,M_s)=\left( 1-4GF_{1s}\right) \left( 1-F_{1u}B\right) - 8K^2u^2F_{1u}, \end{aligned}$$
(69)
$$\begin{aligned}&\displaystyle \theta (M_u,M_s) =4\,G\,\left( 1-F_{1u}B\right) M_s\,, \end{aligned}$$
(70)
$$\begin{aligned}&\displaystyle \lambda (M_u,M_s)= 4\,K\,u\,M_u, \end{aligned}$$
(71)
$$\begin{aligned}&\displaystyle F_{1f} = \frac{N_\mathrm{c}}{\pi ^2}\int _0^\varLambda \mathrm{d}p\,p^4\,\frac{ \varPsi _{f}}{E^3_f}, \end{aligned}$$
(72)
$$\begin{aligned}&\displaystyle n_{f\pm } =\frac{1}{1+\exp \left\{ \frac{\sqrt{p^2 + M^2_f} \pm \mu _f}{T} \right\} } \end{aligned}$$
(73)

and \(u\equiv \left\langle {\overline{u}} u\right\rangle \), \(s\equiv \left\langle {\overline{s}} s\right\rangle \).

About the thermodynamic potential \(\phi =-\varOmega \,\beta \), one has

$$\begin{aligned} \phi _{,\beta }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,E_f\,\varPsi _f +2\,G\,s^2\nonumber \\&+ u\,\left( M_u-m_u\right) +s\,\left( M_s-m_s\right) \nonumber \\= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,E_f\,\varPsi _f +K\,u^2\,s\nonumber \\&+ u\,\left( M_u-m_u\right) +\frac{s\,\left( M_s-m_s\right) }{2}, \end{aligned}$$
(74)
$$\begin{aligned} \phi _{,\gamma }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,\left( n_{+f}-n_{-f}\right) \end{aligned}$$
(75)
$$\begin{aligned} \phi _{,\beta \beta }= & {} -\sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2E_f\left( n_{+f,\beta }+n_{-f,\beta }\right) \end{aligned}$$
(76)
$$\begin{aligned} \phi _{,\beta \gamma }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,\left( n_{+f,\beta }-n_{-f,\beta }\right) \end{aligned}$$
(77)
$$\begin{aligned} \phi _{,\gamma \gamma }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,\left( n_{+f,\gamma }-n_{-f,\gamma }\right) \end{aligned}$$
(78)
$$\begin{aligned} \phi _{,\beta \beta \gamma }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,\left( n_{+f,\beta \beta }-n_{-f,\beta \beta }\right) \end{aligned}$$
(79)
$$\begin{aligned} \phi _{,\beta \gamma \gamma }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,\left( n_{+f,\beta \gamma }-n_{-f,\beta \gamma }\right) \end{aligned}$$
(80)
$$\begin{aligned} \phi _{,\gamma \gamma \gamma }= & {} \sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2\,\left( n_{+f,\gamma \gamma }-n_{-f,\gamma \gamma }\right) \end{aligned}$$
(81)
$$\begin{aligned} \phi _{,\beta \beta \beta }= & {} -\sum _{f=u,d,s} \frac{N_\mathrm{c}}{\pi ^2}\int ^\varLambda _0 \mathrm{d}p\,p^2E_f\left( n_{+f,\beta \beta }+n_{-f,\beta \beta }\right) \nonumber \\&+ \sum _{f=u,d,s}\left( a_f + b_f\,M_f\,M_{f,\beta }\right) M_f\,M_{f,\beta }. \end{aligned}$$
(82)

Finally, by defining

$$\begin{aligned} H_f = F_{1f} + b_f\;M^2_f, \end{aligned}$$
(83)

the chiral susceptibilities are

$$\begin{aligned} \chi _u=\chi _d = \frac{\partial M_u}{\partial m_u} = \frac{1 - 4\,G\,H_s}{1 - 4\,G(H_u+H_s)+4\,H_u\,H_s(4\,G^2-2\,K\,G\,s-K^2\,u^2)+2\,K\,s\,H_u}\nonumber \\ \end{aligned}$$
(84)

and

$$\begin{aligned} \chi _s = \frac{\partial M_s}{\partial m_s} = = \frac{1 - (4\,G-2\,K\,s)\,H_u}{1 - 4\,G(H_u+H_s)+4\,H_u\,H_s(4\,G^2-2\,K\,G\,s-2\,K^2\,u^2)+2\,K\,s\,H_u}.\nonumber \\ \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castorina, P., Lanteri, D. & Mancani, S. Thermodynamic geometry of Nambu–Jona Lasinio model. Eur. Phys. J. Plus 135, 43 (2020). https://doi.org/10.1140/epjp/s13360-019-00004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00004-3

Navigation