Skip to main content
Log in

Strange chaotic attractors under fractal-fractional operators using newly proposed numerical methods

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Two classes of differentiation and integral operators have been successfully used in modeling real world problems. On the one hand, researchers used the concept of non-local differentiation to capture the heterogeneity of nature linked to heavy-tailed, and many other, nonlocalities’ dependency. On the other hand, they used a local operator with power law setting to capture processes with similarities. Both operators were used for different purposes; however, we shall note that there exist in nature chaotic processes that exhibit both kinds of behavior. Thus, neither the nonlocal operator nor the differential operator with power law setting can capture such processes. In connection to this, a new class of differential operators has been recently introduced. The differential operator has two orders: the first is the fractional order and the second is the fractal dimension. To open new doors to capturing more chaotic behaviors, in this paper, the Thomas cyclically symmetric attractor, the Shilnikov attractor, the Rössler attractor, the Langford attractor and the King Cobra attractor under the domain of newly proposed fractal-fractional derivative operators, are investigated. Three different types of fractal-fractional derivative operators called the Caputo, Caputo-Fabrizio-Caputo and the Atangana-Baleanu-Caputo operators are employed to comprehend the dynamics of the attractors with the help of varying fractional-order \( \Omega\) and fractal-dimension \( \Delta\) parameters, where \( \Omega,\Delta\in ]0, 1]\). The new strange behaviour of the attractors obtained in this study was not possible earlier in the literature for either classical or fractional cases. Various new three-dimensional graphs are presented for the numerical simulations, which have been carried out with the application of well-convergent methods devised to find approximate solutions for the fractal-fractional order systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaoxia Zhang, Yu Simin, Chaos, Solitons Fractals 44, 845 (2011)

    Article  Google Scholar 

  2. M.F. Danca, Nonlinear Dyn. 89, 577 (2017)

    Article  MathSciNet  Google Scholar 

  3. A. Coronel-Escamilla, J.F. Gómez-Aguilar, L. Torres, R.F. Escobar-Jimenez, M. Valtierra-Rodríguez, Physica A 487, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Z. Hammouch, T. Mekkaoui, Complex Intell. Syst. 4, 4 (2018)

    Article  Google Scholar 

  5. K.M. Owolabi, A. Atangana, Comput. Appl. Math. 37, 2 (2018)

    Article  Google Scholar 

  6. S. Qureshi, P. Kumar, J. Appl. Math. Comput. Mech. 18, 2 (2019)

    Article  Google Scholar 

  7. K.A. Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 113 (2018)

    Article  Google Scholar 

  8. S. Ullah, M.A. Khan, M. Farooq, Eur. Phys. J. Plus 133, 237 (2018)

    Article  Google Scholar 

  9. K.A. Abro, J.F. Gómez-Aguilar, in Fractional Derivatives with Mittag-Leffler Kernel (Springer, Cham., 2019)

  10. M.A. Khan, Arshad Khan, A. Elsonbaty, A.A. Elsadany, Eur. Phys. J. Plus 134, 379 (2019)

    Article  Google Scholar 

  11. S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, Physica A 534, 122149 (2019)

    Article  MathSciNet  Google Scholar 

  12. A. Yusuf, S. Qureshi, M. Inc, A.I. Aliyu, D. Baleanu, A.A. Shaikh, Chaos 28, 12 (2018)

    Article  Google Scholar 

  13. S. Qureshi, A. Yusuf, Chaos, Solitons Fractals 126, 32 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, D. Baleanu, Chaos 29, 1 (2019)

    Article  Google Scholar 

  15. K.M. Owolabi, A. Atangana, Chaos 29, 2 (2019)

    Google Scholar 

  16. J. Gómez-Aguilar, A. Atangana, Fractal Fraction. 2, 1 (2018)

    Article  Google Scholar 

  17. A. Atangana, J.F. Gómez-Aguilar, Numer. Methods Part D E 34, 5 (2018)

    Article  Google Scholar 

  18. A. Atangana, J. Gómez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Abu Arqub, M. Al-Smadi, Chaos, Solitons Fractals 117, 161 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. O. Abu Arqub, B. Maayah, Chaos, Solitons Fractals 117, 117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.N. Ali, M.S. Osman, S.M. Husnine, SeMA J. 76, 1 (2019)

    Article  MathSciNet  Google Scholar 

  22. S. Qureshi, A. Yusuf, Chaos, Solitons Fractals 126, 32 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dumitru Baleanu, Signal Process. 86, 10 (2006)

    Google Scholar 

  24. M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, Commun. Nonlinear Sci. Numer. Simul. 69, 119 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Baleanu, S.S. Sajjadi, A. Jajarmi, J.H. Asad, Eur. Phys. J. Plus 134, 181 (2019)

    Article  Google Scholar 

  26. A. Jajarmi, S. Arshad,D. Baleanu, Physica A 535, 122524 (2019)

    Article  MathSciNet  Google Scholar 

  27. W. Chen, H. Sun, X. Zhang, D. Korošak, Comput. Math. Appl. 59, 5 (2010)

    Google Scholar 

  28. A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)

    Article  Google Scholar 

  29. Abdon Atangana, Physica A 505, 688 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Abdon Atangana, Chaos, Solitons Fractals 102, 396 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Atangana, S. Jain, Eur. Phys. J. Plus 133, 37 (2018)

    Article  Google Scholar 

  32. A. Allwright, A. Atangana, Eur. Phys. J. Plus 133, 48 (2018)

    Article  Google Scholar 

  33. A. Atangana, R.T. Alqahtani, Eur. Phys. J. Plus 133, 85 (2018)

    Article  Google Scholar 

  34. R. Amanda, A. Atangana, Chaos, Solitons Fractals 116, 414 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ilyas Khan, Chaos 29, 013121 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Atangana, S. Jain, Discr. Cont. Dyn. S, https://doi.org/10.3934/dcdss.2020026 (2019)

    Article  Google Scholar 

  37. A. Allwright, A. Atangana, in Fractional Derivatives with Mittag-Leffler Kernel (Springer, Cham, 2019) pp. 309--341

  38. A. Allwright, A. Atangana, Discr. Cont. Dyn. S, https://doi.org/10.3934/dcdss.2020025 (2019)

    Article  Google Scholar 

  39. M.P. Yadav, R. Agarwal, Chaos 29, 013109 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. Abdon Atangana, Sania Qureshi, Chaos, Solitons Fractals 123, 320 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdon Atangana.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, S., Atangana, A. & Shaikh, A.A. Strange chaotic attractors under fractal-fractional operators using newly proposed numerical methods. Eur. Phys. J. Plus 134, 523 (2019). https://doi.org/10.1140/epjp/i2019-13003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-13003-7

Navigation