Skip to main content
Log in

On the Cerenkov effect and non-classical states of electromagnetic vacuum: from classical pattern to quantum approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, using the quantum approach, we consider the Cerenkov radiation in the case in which an electron moves in the background of the non-classical state of the electromagnetic field, such as the squeezed state. In the first part we briefly describe: the standard results by Frank and Tamm for the Cerenkov effect based on the principles of classical electrodynamics; Fermi's results based on the radiative attenuation of the charged particle; the results of quantum-mechanical calculations. The quantum approach gives an important conclusion on the essence of the Cerenkov effect: in contrast to the classical approach, where the Cerenkov effect explains as a result of interaction of the charged particle with a medium, in the quantum case this effect can be explained as the result of interaction of the charged particle with the electromagnetic vacuum changed by a medium. Within the quantum approach, we obtained also the explicit analytic expression for the Cerenkov radiation in the case when an electron moves in the background of the squeezed state of electromagnetic vacuum (only quantum approach can be applied in this case due to a non-classical essence of the squeezed electromagnetic vacuum). Also, we obtained the explicit analytic expression for the Cerenkov radiation in an external laser field. In this case, the Cerenkov radiation can be interpreted as a stimulated process in contrast to the “classical” case, where the Cerenkov radiation has a spontaneous essence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A. Čerenkov, Phys. Rev. 52, 378 (1937)

    Article  ADS  Google Scholar 

  2. V.L. Ginzburg, Theoretical Physics and Astrophysics (Pergamon Press, 1979)

  3. C. Luo, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, Science 299, 368 (2003)

    Article  ADS  Google Scholar 

  4. B. Altschul, Phys. Rev. D 75, 105003 (2007)

    Article  ADS  Google Scholar 

  5. D.V. Gal'tsov, E.Y. Melkumova, K. Salehi, Phys. Rev. D 75, 105013 (2007)

    Article  ADS  Google Scholar 

  6. X. Liu, G.E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S.A. Boppart, D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013)

    Article  ADS  Google Scholar 

  7. B. Altschul, Phys. Rev. D 90, 021701 (2014)

    Article  ADS  Google Scholar 

  8. K. Schober, B. Altschul, Phys. Rev. D 92, 125016 (2015)

    Article  ADS  Google Scholar 

  9. T. Denis, M.W. van Dijk, J.H.H. Lee, R. van der Meer, A. Strooisma, P.J.M. van der Slot, W.L. Vos, K.J. Boller, Phys. Rev. A 94, 053852 (2016)

    Article  ADS  Google Scholar 

  10. T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, S. Liu, Appl. Phys. Lett. 110, 231102 (2017)

    Article  ADS  Google Scholar 

  11. J. Tao, L. Wu, G. Zheng, Carbon 133, 249 (2018)

    Article  Google Scholar 

  12. C. Yu, S. Liu, Appl. Phys. Lett. 114, 181106 (2019)

    Article  ADS  Google Scholar 

  13. H. Fares, M. Almokhtar, Phys. Lett. A 383, 1005 (2019)

    Article  ADS  Google Scholar 

  14. M.O. Scully, M. Suhail Zubairy, Quantum Optics (Cambridge University Press, 1997)

  15. R. Schnabel, Phys. Rep. 684, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Stoler, Phys. Rev. D 1, 3217 (1970)

    Article  ADS  Google Scholar 

  17. D. Stoler, Phys. Rev. D 4, 1925 (1971)

    Article  ADS  Google Scholar 

  18. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, M. Kozuma, Phys. Rev. Lett. 100, 093601 (2008)

    Article  ADS  Google Scholar 

  19. N.V. Corzo, Q. Glorieux, A.M. Marino, J.B. Clark, R.T. Glasser, P.D. Lett, Phys. Rev. A 88, 043836 (2013)

    Article  ADS  Google Scholar 

  20. A. Dutt, K. Luke, S. Manipatruni, A.L. Gaeta, P. Nussenzveig, M. Lipson, Phys. Rev. Appl. 3, 044005 (2015)

    Article  ADS  Google Scholar 

  21. J. Amann, W. Berg, V. Blank, F.J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings et al., Nat. Photon. 6, 693 (2008)

    Article  ADS  Google Scholar 

  22. C. Pellegrini, Eur. Phys. J. H 37, 659 (2012)

    Article  Google Scholar 

  23. C. Pellegrini, Phys. Scr. T169, 014004 (2016)

    Article  ADS  Google Scholar 

  24. Y. Kalkal, V. Kumar, Phys. Rev. ST Accel. Beams 18, 030707 (2015)

    Article  ADS  Google Scholar 

  25. X. Liu, A.S. Svane, J. Lægsgaard, H. Tu, S.A. Boppart, D. Turchinovich, J. Phys. D 49, 023001 (2015)

    Article  ADS  Google Scholar 

  26. A.F. Klinskikh, P.A. Meleshenko, A.V. Dolgikh, H.T.T. Nguyen, Nuovo Cimento B 125, 1161 (2010)

    Google Scholar 

  27. P.A. Meleshenko, H.T. Nguyen, A.F. Klinskikh, Eur. Phys. J. D 67, 209 (2013)

    Article  ADS  Google Scholar 

  28. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Course of Theoretical Physics, Vol. 8, Electrodynamics of Continuous Media (Pergamon Press, 1984)

  29. E. Fermi, Phys. Rev. 57, 485 (1940)

    Article  ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 3, Quantum Mechanics (Non-relativistic Theory) (Butterworth-Heinemann, 1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang T. T. Nguyen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T.T., Klinskikh, A.F., Meleshenko, P.A. et al. On the Cerenkov effect and non-classical states of electromagnetic vacuum: from classical pattern to quantum approach. Eur. Phys. J. Plus 134, 613 (2019). https://doi.org/10.1140/epjp/i2019-12963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12963-8

Navigation