Skip to main content
Log in

Role of confined gluons and pions in nucleon-nucleon interaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Nucleon-nucleon interaction in singlet ( 1S0 and triplet ( 3S1 channels have been studied in the framework of relativistic harmonic model using the resonating group method in Born-Oppenheimer approximation. The full Hamiltonian consists of kinetic energy, two-body confinement potential, confined one-gluon-exchange potential and one-pion-exchange potential. Contribution of confined one-gluon-exchange potential and one-pion-exchange potential to the adiabatic nucleon-nucleon interaction potential is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Ferreira, N. Zagury, Lett. Nuovo Cimento 20, 511 (1977)

    Google Scholar 

  2. P.L. Ferreira, J.A. Helayel, N. Zagury, Nuovo Cimento A 55, 215 (1980)

    ADS  Google Scholar 

  3. M. Bander, D. Silverman, B. Klima, U. Maor, Phys. Rev. D 29, 2038 (1984)

    ADS  Google Scholar 

  4. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    ADS  Google Scholar 

  5. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

    ADS  Google Scholar 

  6. S.B. Khadkikar, S.K. Gupta, Phys. Lett. B 124, 523 (1983)

    ADS  Google Scholar 

  7. O.W. Greenberg, Annu. Rev. Nucl. Part. Phys. 28, 327 (1978)

    ADS  Google Scholar 

  8. R.K. Bhaduri, L.E. Cohler, Y. Nogami, Nuovo Cimento A 65, 376 (1981)

    ADS  Google Scholar 

  9. D.B. Lichtenberg, Int. J. Mod. Phys. A 2, 1669 (1987)

    ADS  Google Scholar 

  10. M. Narodetskii, R. Ceuleneer, C. Semay, J. Phys. G 18, 1901 (1992)

    ADS  Google Scholar 

  11. N. Isgur, D. Scora, B. Grinstein, M.B. Wise, Phys. Rev. D 39, 799 (1989)

    ADS  Google Scholar 

  12. D. Scora, N. lsgur, Phys. Rev. D 52, 2783 (1995)

    ADS  Google Scholar 

  13. M.G. Olsson, S. Veseli, K. Williams, Phys. Rev. D 51, 5079 (1995)

    ADS  Google Scholar 

  14. R.F. Labed, Phys. Rev. D 47, 1134 (1993)

    ADS  Google Scholar 

  15. S.B. Khadkikar, K.B. Vijaya Kumar, Phys. Lett. B 254, 320 (1991)

    ADS  Google Scholar 

  16. K.B. Vijaya Kumar, S.B. Khadkikar, Nucl. Phys. A 556, 396 (1993)

    ADS  Google Scholar 

  17. K. Shimizu, Phys. Lett. B 148, 418 (1984)

    ADS  Google Scholar 

  18. C.S. Vanamali, K.B. Vijaya Kumar, Phys. Rev. C. 94, 054002 (2016)

    ADS  Google Scholar 

  19. F. Fernandez, E. Oset, Nucl. Phys. A 455, 720 (1986)

    ADS  Google Scholar 

  20. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    ADS  Google Scholar 

  21. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    ADS  Google Scholar 

  22. C. Ordóñez, U. van Kolck, Phys. Lett. B 291, 459 (1992)

    ADS  Google Scholar 

  23. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994)

    ADS  Google Scholar 

  24. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. C 53, 2086 (1996)

    ADS  Google Scholar 

  25. U. Van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999)

    ADS  Google Scholar 

  26. C.A. da Rocha, M.R. Robilotta, Phys. Rev. C 49, 1818 (1994)

    ADS  Google Scholar 

  27. C.A. da Rocha, M.R. Robilotta, Phys. Rev. C 52, 531 (1995)

    ADS  Google Scholar 

  28. J.-L. Ballot, M.R. Robilotta, C.A. da Rocha, Phys. Rev. C 57, 1574 (1998)

    ADS  Google Scholar 

  29. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997)

    ADS  Google Scholar 

  30. N. Kaiser, S. Gerstendöerfer, W. Weise, Nucl. Phys. A 637, 395 (1998)

    ADS  Google Scholar 

  31. N. Kaiser, Phys. Rev. C 61, 014003 (1999)

    ADS  Google Scholar 

  32. N. Kaiser, Phys. Rev. C 62, 024001 (2000)

    ADS  Google Scholar 

  33. N. Kaiser, Phys. Rev. C 63, 044010 (2001)

    ADS  Google Scholar 

  34. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    ADS  Google Scholar 

  35. E. Epelbaum, W. Glöckle, U.-G. Meissner, Nucl. Phys. A 637, 107 (1998)

    ADS  Google Scholar 

  36. E. Epelbaum, W. Glöckle, U.-G. Meissner, Nucl. Phys. A 671, 295 (2000)

    ADS  Google Scholar 

  37. E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991)

    ADS  Google Scholar 

  38. V. Bernard, N. Kaiser, J. Kambor, U.-G. Meissner, Phys. Rev. D 46, 2756 (1992)

    ADS  Google Scholar 

  39. T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999)

    ADS  Google Scholar 

  40. T. Becher, H. Leutwyler, JHEP 06, 017 (2001)

    ADS  Google Scholar 

  41. V. Bernard, T.R. Hemmert, U.G. Meissner, Phys. Rev. D 67, 076008 (2003)

    ADS  Google Scholar 

  42. B. Kubis, U.G. Meissner, Eur. Phys. J. C 18, 747 (2001)

    ADS  Google Scholar 

  43. V. Bernard, N. Kaiser, U.-G. Meissner, Int. J. Mod. Phys. E 4, 193 (1995)

    ADS  Google Scholar 

  44. D.R. Entem, R. Machleidt, Phys. Lett. B 524, 93 (2002)

    ADS  Google Scholar 

  45. S. Aoki, Eur. Phys. J. A 49, 81 (2013)

    ADS  Google Scholar 

  46. N. Ishii, AIP Conf. Proc. 1388, 623 (2011)

    ADS  Google Scholar 

  47. S. Aoki, T. Hatsuda, N. Ishii, Comput. Sci. Dis. 1, 015009 (2008)

    Google Scholar 

  48. K. Murano, N. Ishii, S. Aoki, T. Hatsuda, PoS LAT2009, 126 (2009)

    Google Scholar 

  49. H. Suganuma, T.M. Doi, K. Redlich, C. Sasaki, J. Phys. G 44, 124001 (2017)

    ADS  Google Scholar 

  50. R. Vinh Mau, C. Semay, B. Loiseau, M. Lacombe, Phys. Rev. Lett. 67, 1392 (1991)

    ADS  Google Scholar 

  51. S. Kumano, Nucl. Phys. A 782, 442 (2007)

    ADS  Google Scholar 

  52. PANDA Collaboration (W. Erni), Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons, arXiv:0903.3905 [hep-ex]

  53. NICA Collaboration (A.N. Sissakian et al.), J. Phys. G 36, 064069 (2009)

    ADS  Google Scholar 

  54. J.C. Yang et al., Nucl. Instrum. Methods Phys. Res. Sec. B 317, 263 (2013)

    ADS  Google Scholar 

  55. P.C. Vinodkumar, K.B. Vijaya Kumar, S.B. Khadkikar, Pramana J. Phys. 39, 47 (1992)

    ADS  Google Scholar 

  56. M. Oka, K. Yazaki, Prog. Theor. Phys. 66, 556 (1981)

    ADS  Google Scholar 

  57. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  58. F. Myhrer, J. Wroldnen, Rev. Mod. Phys. 60, 629 (1988)

    ADS  Google Scholar 

  59. A. Valcarce, A. Buchmann, F. Fernandez, A. Faessler, Phys. Rev. C 50, 2246 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Nilakanthan.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilakanthan, V.K., Shastry, V.C., Raghavendra, S. et al. Role of confined gluons and pions in nucleon-nucleon interaction. Eur. Phys. J. Plus 134, 517 (2019). https://doi.org/10.1140/epjp/i2019-12908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12908-3

Navigation