Skip to main content
Log in

Dynamical analysis and chaos synchronization of a fractional-order novel financial model based on Caputo-Fabrizio derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, a novel financial model based on a recent nonsmooth fractional order Caputo-Fabrizio derivative is introduced. The conditions for the existence and uniqueness of the solution of the proposed model are obtained. The local stability analysis of admissible and boundary equilibrium points along with possible local bifurcations are discussed. The key dynamical properties of the model are investigated through obtaining regions of stability, phase portraits and bifurcation diagrams. Chaos synchronization between two master/slave fractional-order financial models is achieved based on the adaptive control theory. In particular, the more realistic case where the values of the master system's parameters are unknown. In addition, the scheme of active chaos synchronization is examined for the suggested system's behavior. Finally, numerical simulations are given to validate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Lü, G. Chen, Int. J. Bifurc. Chaos 12, 659 (2002)

    Google Scholar 

  2. G. Cai, J. Huang, Int. J. Nonlinear Sci. 3, 213 (2007)

    MathSciNet  Google Scholar 

  3. C. Ma, X. Wang, Commun. Nonlinear Sci. Numer. Simul. 17, 721 (2012)

    ADS  MathSciNet  Google Scholar 

  4. C. Ma, X.Y. Wang, Commun. Nonlinear Sci. Numer. Simul. 17, 721 (2012)

    ADS  MathSciNet  Google Scholar 

  5. Y. Ding, W. Jiang, H. Wang, Chaos, Solitons Fractals 45, 1048 (2012)

    ADS  Google Scholar 

  6. K. Ding, X. Xu, Discr. Dyn. Nat. Soc. 2016, 3269248 (2016)

    Google Scholar 

  7. B. Sang, B. Huang, Electron. J. Qual. Theory Differ. Equ. https://doi.org/10.14232/ejqtde.2017.1.95

  8. F. Zhang, G. Yang, Y. Zhang, X. Liao, G. Zhang, Complexity 2018, 3789873 (2018)

    Google Scholar 

  9. O.I. Tacha, C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, S. Vaidyanathan, V.T. Pham, Appl. Math. Comput. 276, 200 (2016)

    MathSciNet  Google Scholar 

  10. P. Zhou, K. Huang, Commun. Nonlinear Sci. Numer. Simul. 19, 2005 (2014)

    ADS  Google Scholar 

  11. P. Zhou, M. Ke, P. Zhu, Complexity 2018, 4192824 (2018)

    Google Scholar 

  12. P. Zhou, M. Ke, Complexity 2018, 4970152 (2018)

    Google Scholar 

  13. P. Zhou, R.J. Bai, J.M. Zheng, Nonlinear Dyn. 82, 519 (2015)

    Google Scholar 

  14. P. Zhou, M. Ke, Complexity 2017, 4037682 (2017)

    Google Scholar 

  15. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

  16. K. Diethelm, Nonlinear Dyn. 71, 613 (2013)

    Google Scholar 

  17. S. Ullah, M.A. Khan, M. Farooq, Chaos, Solitons Fractals 116, 63 (2018)

    ADS  MathSciNet  Google Scholar 

  18. S. Das, Discr. Contin. Dyn. Syst. S (2019) https://doi.org/10.3934/dcdss.2020032

    Google Scholar 

  19. J.F. Gömez-Aguilar, A. Atangana, Eur. Phys. J. Plus 132, 13 (2017)

    Google Scholar 

  20. S. Qureshi, A. Yusuf, Eur. Phys. J. Plus 134, 171 (2019)

    Google Scholar 

  21. R. Metzler, J. Klafter, Phys. Rep. 339, 77 (2000)

    Google Scholar 

  22. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, New York, 2006)

    MATH  Google Scholar 

  23. W. Lin, J. Math. Anal. Appl. 332, 709 (2007)

    MathSciNet  Google Scholar 

  24. Z.M. Odibat, N.T. Shawagfeh, Appl. Math. Comput. 186, 286 (2007)

    MathSciNet  Google Scholar 

  25. H. Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Entropy 17, 5771 (2005)

    ADS  Google Scholar 

  26. M. Caputo, Geophys. J. Int. 13, 529 (1967)

    ADS  Google Scholar 

  27. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  28. A. Atangana, D. Baleanu, Therm. Sci. 2, 763 (2016)

    Google Scholar 

  29. A. Atangana, J.F. Gomez-Aguila, Eur. Phys. J. Plus 133, 166 (2018)

    Google Scholar 

  30. A. Atangana, Physica A 505, 688 (2018)

    ADS  MathSciNet  Google Scholar 

  31. I. Koca, Eur. Phys. J. Plus 133, 100 (2018)

    Google Scholar 

  32. S. Uçar, E. Uçar, N. Özdemir, Z. Hammouch, Chaos, Solitons Fractals 118, 300 (2019)

    ADS  MathSciNet  Google Scholar 

  33. J. Hristov, Therm. Sci. 20, 757 (2016)

    Google Scholar 

  34. G. Arthi, J.H. Park, H.Y. Jung, Commun. Nonlinear Sci. Numer. Simul. 32, 145 (2016)

    ADS  MathSciNet  Google Scholar 

  35. M.B. Baskonus, Z. Hammouch, T. Mekkaoui, H. Bulut, AIP Conf. Proc. 1738, 290005 (2016)

    Google Scholar 

  36. A. Hajipour, H. Tavakoli, Int. J. Bifurcat. Chaos 27, 1750198 (2017)

    Google Scholar 

  37. G.C. Wu, D. Baleanu, H.P. Xie, F.L. Chen, Physica A 460, 374 (2016)

    ADS  MathSciNet  Google Scholar 

  38. M.A. Khan, T. Wali, Y. Khan, S. Islam, Int. J. Biomath. 10, 1750096 (2017)

    MathSciNet  Google Scholar 

  39. J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)

    MathSciNet  Google Scholar 

  40. S. Ullah, M.A. Khan, M. Farooq, Eur. Phys. J. Plus 133, 237 (2018)

    Google Scholar 

  41. M.A. Dokuyucu, E. Celik, H. Bulut, H.M. Baskonus, Eur. Phys. J. Plus 133, 92 (2018)

    Google Scholar 

  42. J. Singh, D. Kumar, D. Baleanu, Adv. Differ. Equ. 231, 1 (2018)

    Google Scholar 

  43. S.A. Khan, K. Shah, G. Zaman, F. Jarad, Chaos 29, 013128 (2019)

    ADS  MathSciNet  Google Scholar 

  44. J. Hristov, Therm. Sci. 21, 827 (2017)

    Google Scholar 

  45. A. Atangana, J.F. Gomez-Aguila, Eur. Phys. J. Plus 133, 166 (2018)

    Google Scholar 

  46. A. Atangana, Physica A 505, 688 (2018)

    ADS  MathSciNet  Google Scholar 

  47. K.A. Abro, M.M. Rashidi, I. Khan, I.A. Abro, A. Tassaddiq, J. Nanofluids 7, 738 (2018)

    Google Scholar 

  48. K.A. Abro, I. Khan, A. Tassaddiq, Math. Model. Nat. Phenom. 13, 1 (2018)

    MathSciNet  Google Scholar 

  49. I. Koca, Eur. Phys. J. Plus 133, 100 (2018)

    Google Scholar 

  50. I. Koca, Int. J. Optim. Control 8, 17 (2018)

    Google Scholar 

  51. A. Atangana, M.A. Khan, Chaos, Solitons Fractals 126, 50 (2019)

    ADS  MathSciNet  Google Scholar 

  52. T. Gul, H. Anwar, M.A. Khan, I. Khan, P. Kumam, Symmetry 11, 640 (2019)

    Google Scholar 

  53. M.A. Khan, M. Azizah, S. Ullah, Chaos, Solitons Fractals 122, 32 (2019)

    ADS  MathSciNet  Google Scholar 

  54. A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  55. M. Di Bernardo, M.I. Feigin, S.J. Hogan, M.E. Homer, Chaos, Solitons Fractals 10, 1881 (1999)

    MathSciNet  Google Scholar 

  56. R.I. Leine, H. Nijmeijer, Dynamics and bifurcations of non-smooth mechanical systems, in Lecture Notes in Applied and Computational Mechanics, Vol. 18 (Springer-Verlag, Berlin, 2004)

    MATH  Google Scholar 

  57. M. Di Bernado, C. Budd, A. Champneys, P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications (Springer-Verlag, 2008)

  58. S.H. Fu, X.Y. Meng, Q.S. Lu, Appl. Math. Mech. 36, 1639 (2015)

    Google Scholar 

  59. J. Niu, R. Liu, Y. Shen, S. Yang, Chaos, Solitons Fractals 123, 14 (2019)

    ADS  MathSciNet  Google Scholar 

  60. J. Losada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  61. E. Misirli, Y. Gurefe, Numer. Algorithms 57, 425 (2011)

    MathSciNet  Google Scholar 

  62. K. Diethelm, Nonlinear Dyn. 71, 613 (2013)

    Google Scholar 

  63. S.P. Dawson, C. Grebogi, J.A. Yorke, I. Kan, H. Kocak, Phys. Lett. A 162, 249 (1992)

    ADS  MathSciNet  Google Scholar 

  64. C. Jeffries, J. Perez, Phys. Rev. A 27, 601 (1983)

    ADS  MathSciNet  Google Scholar 

  65. A. Jajarmi, M. Hajipour, D. Baleanu, Chaos, Solitons Fractals 99, 285 (2017)

    ADS  MathSciNet  Google Scholar 

  66. W.C. Chen, Chaos, Solitons Fractals 36, 1305 (2008)

    ADS  Google Scholar 

  67. Z. Wang, X. Huang, G. Shi, Comput. Math. Appl. 62, 1531 (2011)

    MathSciNet  Google Scholar 

  68. Z. Wang, X. Huang, H. Shen, Neurocomputing 83, 83 (2012)

    Google Scholar 

  69. L. Chen, Y. Chai, R. Wu, Discr. Dyn. Nat. Soc. 2011, 958393 (2011)

    Google Scholar 

  70. H.K. Khalil, Nonlinear Systems (Macmillan Publishing Company, New York, 1992)

  71. D. Matignon, Comput. Eng. Syst. Appl. 2, 963 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Al-khedhairi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-khedhairi, A. Dynamical analysis and chaos synchronization of a fractional-order novel financial model based on Caputo-Fabrizio derivative. Eur. Phys. J. Plus 134, 532 (2019). https://doi.org/10.1140/epjp/i2019-12878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12878-4

Navigation