Skip to main content
Log in

Reheating from F-term inflation on brane and gravitino abundance

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The braneworld Randall Sundrum II (RSII) model has been introduced to solve the problem related to the inflation standard scenario. The RSII model is based on a modification in the Friedmann equation by addition of the fifth dimension, which corresponds to energy, called the brane tension \(\lambda\). After the inflation end, and when the universe enters in the reheating epoch, the effect of this energy \(\lambda\) continues. In this context, we use the F-term model due to a simple superpotential with different forms of the Kähler potential to investigate the brane tension influence on the reheating temperature value \( T_{\rm rh}\). Consequently, we found a large value of \( T_{\rm rh}\), which varies in the range \((1-17) \times 10^{14}\) GeV. Also, we have shown that the variation of temperature value \( T_{{\rm rh}}\) depends on the brane tension and on the inflationary potential. Moreover in the F-term with the linear Kähler potential, the inflaton has a nonzero vacuum expectation value. At the end of inflation, this leads to an overproduction of gravitino which causes the destruction of the successful predictions of nucleosynthesis. In this context, we have shown that the increase in temperature is accompanied by the decrease in gravitino abundance. Therefore the solution of the gravitino overproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Baumann, arXiv:0907.5424

  2. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    ADS  Google Scholar 

  3. A.R. Liddle, D.H. Lyth, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge Universety Press, Cambridge, U.K., 2009)

  4. D. Baumann, L. McAllister, Annu. Rev. Nucl. Part. Sci. 59, 67 (2009)

    ADS  Google Scholar 

  5. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    ADS  Google Scholar 

  6. P. Brax, C. Bruck, A. Davis, Rep. Prog. Phys. 67, 2183 (2004)

    ADS  Google Scholar 

  7. G. Calcagni, S. Kuroyanagi, J. Ohashi, S. Tsujikawab, JCAP 03, 052 (2014)

    ADS  Google Scholar 

  8. T. Shiromizu, K. Maeda, M. Sasaki, Phys. Rev. D 62, 024012 (2000)

    ADS  MathSciNet  Google Scholar 

  9. P. Binetruy, C. Deffayet, D. Langlois, Nucl. Phys. B 565, 269 (2000)

    ADS  Google Scholar 

  10. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

    ADS  MathSciNet  Google Scholar 

  11. R. Maartens, D. Wands, B. Basset, I. Heard, Phys. Rev. D 62, 041301 (2000)

    ADS  Google Scholar 

  12. R. Maartens, K. Koyama, Living Rev. Relativ 7, 7 (2004)

    ADS  Google Scholar 

  13. L. Senatore, New Frontiers in Fields and Strings, in Proceedings of the 2015 Conference on Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2015) (World Scientific, 2017) pp. 447--543

  14. K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981)

    ADS  Google Scholar 

  15. K. Nakayama, F. Takahashib, Ts.T. Yanagida, Phys. Lett. B 730, 24 (2014)

    ADS  Google Scholar 

  16. J. Yokokama, Phys. Rev. D 58, 08351 (1998)

    Google Scholar 

  17. S. Choudhury, A. Mazumdar, S. Pal, JCAP 07, 041 (2013)

    ADS  Google Scholar 

  18. S. Choudhury, S. Pal, JCAP 04, 018 (2012)

    ADS  Google Scholar 

  19. M. Yamaguchi, Class. Quantum Grav. 28, 103001 (2011)

    ADS  Google Scholar 

  20. G. Lazarides, Lect. Notes. Phys. 592, 351 (2002)

    ADS  Google Scholar 

  21. D.H. Lyth, A. Riotto, Phys. Rep. 314, 1 (1999)

    ADS  Google Scholar 

  22. S. Choudhury, A. Mazumdar, E. Pukartas, JHEP 2014, 77 (2014)

    Google Scholar 

  23. F. Takahashi, In AIP Conf. Proc. 1040, 57 (2008)

    ADS  Google Scholar 

  24. M. Endo, F. Takahashi, T.T. Yanagida, Phys. Rev. D 76, 083509 (2007)

    ADS  MathSciNet  Google Scholar 

  25. Y. Shtanov, J. Traschen, R. Brandenberger, Phys. Rev. D 51, 5438 (1995)

    ADS  Google Scholar 

  26. T. Giblin, E. Nesbit, O. Ozsoy, G. Sengor, S. Watson, arXiv:1701.01455

  27. L. Kofman, A.D. Linde, A.A. Starobinsky, Phys. Rev. D 56, 3258 (1997)

    ADS  Google Scholar 

  28. B.A. Bassett, S. Tsujikawa, D. Wands, Rev. Mod. Phys. 78, 537 (2006)

    ADS  Google Scholar 

  29. J.H. Traschen, R.H. Brandenberger, Phys. Rev. D 42, 2491 (1990)

    ADS  Google Scholar 

  30. S. Davidson, S. Sarkar, JHEP 2000, 12 (2000)

    Google Scholar 

  31. K. Harigaya, JHEP 05, 006 (2014)

    ADS  Google Scholar 

  32. T.Co. Raymond, F. D'Eramoc, J.H. Lawrence, JHEP 2017, 5 (2017)

    Google Scholar 

  33. B. Ghayour, Int. J. Mod. Phys. D 26, 1750003 (2017)

    ADS  MathSciNet  Google Scholar 

  34. S. Choudhury, S. Pal, Nucl. Phys. B 857, 85 (2012)

    ADS  Google Scholar 

  35. T. Rehagen, G.B. Gelmini, JCAP 2015, 039 (2015)

    Google Scholar 

  36. M.J. Hayashi, Proc. ICHEP 42, 13552 (2010)

    Google Scholar 

  37. M.C. Bento, R.G. Felipe, N.M.C. Santos, Phys. Rev. D 69, 123513 (2004)

    ADS  Google Scholar 

  38. A. Monteux, C.S. Shin, Phys. Rev. D 92, 035002 (2015)

    ADS  Google Scholar 

  39. P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor, O. Pisanti, Phys. Rev. D 92, 123534 (2015)

    ADS  Google Scholar 

  40. M. Kawasaki, F. Takahashi, T.T. Yanagida, Phys. Lett. B 638, 8 (2006)

    ADS  Google Scholar 

  41. F. Hasegawa, K. Nakayama, T. Terada, Y. Yamada, Phys. Lett. B 777, 270 (2018)

    ADS  Google Scholar 

  42. K. Kohri, M. Yamaguchi, J.I. Yokoyama, Phys. Rev. D 70, 043522 (2004)

    ADS  Google Scholar 

  43. D.H. Lyth, Phys. Let. B 488, 417 (2000)

    ADS  Google Scholar 

  44. M. Endo, M. Kawasaki, F. Takahashi, T.T. Yanagida, Phys. Lett. B 642, 518 (2006)

    ADS  Google Scholar 

  45. S. Nakamura, M. Yamaguchi, Phys. Lett. B 638, 389 (2006)

    ADS  Google Scholar 

  46. M. Ferricha-Alami, Z. Sakhi, H. Chakir, M. Bennai, Eur. Phys. J. Plus 132, 303 (2017)

    Google Scholar 

  47. R. Maartens, K. Koyama, Living Rev. Relativ 13, 5 (2010)

    ADS  Google Scholar 

  48. S. Choudhury, S. Pal, Phys. Rev. D 85, 043529 (2012)

    ADS  Google Scholar 

  49. R. Allahverdi, R. Brandenberger, F.Y. Cyr-Racine, A. Mazumdar, Annu. Rev. Nucl. Part. Sci. 60, 27 (2010)

    ADS  Google Scholar 

  50. M. Ferricha-Alamia et al., Mosc. Univ. Phys. Bullet. 72, 425 (2017)

    ADS  Google Scholar 

  51. C. Bambi, F.R. Urban, JCAP 2007, 018 (2007)

    Google Scholar 

  52. M. Bastero-Gil, S.F. King, Q. Shafi, Phys. Lett. B 651, 345 (2007)

    ADS  Google Scholar 

  53. M. Dine, R. Kitano, A. Morisse, Y. Shirman, Phys. Rev. D 73, 123518 (2006)

    ADS  MathSciNet  Google Scholar 

  54. K. Nakayama, F. Takahashi, T.T. Yanagida, JCAP 2010, 010 (2010)

    Google Scholar 

  55. A. Mazumdar, J. Rocher, Phys. Rep. 497, 85 (2011)

    ADS  MathSciNet  Google Scholar 

  56. M. Ferricha-Alami, A. Safsafi, A. Bouaouda, R. Zarrouki, M. Bennai, Int. J. Mod. Phys. A 30, 1550208 (2015)

    ADS  Google Scholar 

  57. G. Lazarides, C. Panagiotakopoulos, Phys. Rev. D 52, 559 (1995)

    ADS  Google Scholar 

  58. M.Ur. Rehman, Q. Shafi, Phys. Rev. D 86, 027301 (2012)

    ADS  Google Scholar 

  59. M. Ferricha-Alami, H. Chakir, J. Inchaouh, M. Bennai, Int. J. Mod. Phys. A 29, 1450146 (2014)

    ADS  Google Scholar 

  60. Z. Mounzi, M. Ferricha-Alami, A. Safsafi, M. Bennai, J. Astrophys. Astron. 37, 13 (2016)

    ADS  Google Scholar 

  61. Planck Collaboration (N. Aghanim), arXiv:1807.06209 [astro-ph.CO] (2018)

  62. A. Linde, Phys. Rev. D 49, 748 (1994)

    ADS  Google Scholar 

  63. K. Nakayama, F. Takahashi, T.T. Yanagida, Phys. Lett. B 718, 526 (2012)

    ADS  Google Scholar 

  64. M. Kawasaki, K. Kohri, T. Moroi, Phys. Lett. B 625, 7 (2005)

    ADS  Google Scholar 

  65. M. Endo, K. Hamaguchi, F. Takahashi, Phys. Rev. Lett. 96, 211301 (2006)

    ADS  Google Scholar 

  66. M.Ur. Rehman, V.N. Senoguz, Q. Shafi, Phys. Rev. D 75, 043522 (2007)

    ADS  Google Scholar 

  67. B.J. Muñoz, M. Kamionkowski, Phys. Rev. D 91, 043521 (2015)

    ADS  Google Scholar 

  68. R.C. de Freitas, S.V. Gonçalves, arXiv:1509.08500

  69. J. McDonald, Phys. Rev. D 61, 083513 (2000)

    ADS  Google Scholar 

  70. K. Enqvist, S. Nurmi, T. Tenkanen, K. Tuominen, JCAP 2014, 035 (2014)

    Google Scholar 

  71. P. Adshead, E.I. Sfakianakis, Phys. Rev. Lett. 116, 091301 (2016)

    ADS  Google Scholar 

  72. M. Kawasaki, K. Kohri, T. Moroi, Y. Takaesu, Phys. Rev. D 97, 023502 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferricha-Alami.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khay, I., Salamate, F., Ferricha-Alami, M. et al. Reheating from F-term inflation on brane and gravitino abundance. Eur. Phys. J. Plus 134, 498 (2019). https://doi.org/10.1140/epjp/i2019-12860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12860-2

Navigation