Skip to main content
Log in

A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, three mathematical methods, namely, the Riccati-Bernoulli sub-ODE method, the \( \exp(-\varphi(\xi))\)-expansion method and the sine-cosine approach, are applied for constructing many new exact solutions for the 2D Ginzburg-Landau equation. This equation is a prevalent model for the evolution of slowly varying wave packets in nonlinear dissipative media. The three proposed methods are efficient and powerful in solving a wide class of nonlinear evolution equations. In the end, three-dimensional graphs of some solutions have been plotted. Finally, we compare our results with other results in order to show that the proposed methods are robust and adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    ADS  Google Scholar 

  2. A. Wazwaz, Appl. Math. Lett. 19, 1007 (2006)

    MathSciNet  Google Scholar 

  3. A. El Achab, A. Bekir, Comput. Methods Differ. Equ. 2, 63 (2014)

    Google Scholar 

  4. A. El Achab, A. Amine, Nonlinear Dyn. 91, 995 (2018)

    Google Scholar 

  5. P. Zhong, R. Yang, G. Yang, Phys. Lett. A 373, 19 (2008)

    ADS  MathSciNet  Google Scholar 

  6. B. Batool, G. Akram, Opt. Quantum Electron. 49, 1 (2017)

    Google Scholar 

  7. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, in Applied Mathematical Sciences, Vol. 68, second ed. (Springer-Verlag, New York, 1997)

  8. M.A.E. Abdelrahman, M. Kunik, J. Math. Anal. Appl. 409, 1140 (2014)

    MathSciNet  Google Scholar 

  9. M.A.E. Abdelrahman, M. Kunik, J. Comput. Phys. 275, 213 (2014)

    ADS  MathSciNet  Google Scholar 

  10. M.A.E. Abdelrahman, M. Kunik, Math. Methods Appl. Sci. 38, 1247 (2015)

    ADS  MathSciNet  Google Scholar 

  11. M.A.E. Abdelrahman, Nonlinear Anal. 155, 140 (2017)

    MathSciNet  Google Scholar 

  12. M.A.E. Abdelrahman, Z. Naturforsch. 72a, 873 (2017)

    ADS  Google Scholar 

  13. M.A.E. Abdelrahman, Int. J. Nonlinear Sci. Numer. Simul. 19, 223 (2018)

    MathSciNet  Google Scholar 

  14. P. Razborova, B. Ahmed, A. Biswas, Appl. Math. Inf. Sci. 8, 485 (2014)

    MathSciNet  Google Scholar 

  15. A. Biswas, M. Mirzazadeh, Optik 125, 4603 (2014)

    ADS  Google Scholar 

  16. M. Younis, S. Ali, S.A. Mahmood, Nonlinear Dyn. 81, 1191 (2015)

    Google Scholar 

  17. A.H. Bhrawy, Appl. Math. Comput. 247, 30 (2014)

    MathSciNet  Google Scholar 

  18. M.A.E. Abdelrahman, M.A. Sohaly, Indian J. Phys. 93, 903 (2019)

    ADS  Google Scholar 

  19. M.A.E. Abdelrahman, M.A. Sohaly, Eur. Phys. J. Plus 132, 339 (2017)

    Google Scholar 

  20. E. Fan, Phys. Lett. A 277, 212 (2000)

    ADS  MathSciNet  Google Scholar 

  21. A.M. Wazwaz, Appl. Math. Comput. 187, 1131 (2007)

    MathSciNet  Google Scholar 

  22. X.F. Yang, Z.C. Deng, Y. Wei, Adv. Diff. Equ. 2015, 117 (2015)

    Google Scholar 

  23. M.A.E. Abdelrahman, Nonlinear Eng. Model. Appl. 7, 279 (2018)

    ADS  Google Scholar 

  24. S.Z. Hassan, M.A.E. Abdelrahman, Pramana J. Phys. 91, 67 (2018)

    ADS  Google Scholar 

  25. M. Kaplan, A. Bekir, A. Akbulut, Nonlinear Dyn. 85, 2843 (2016)

    Google Scholar 

  26. M. Mirzazadeh, M. Eslami, A. Biswas, Nonlinear Dyn. 80, 387 (2015)

    Google Scholar 

  27. W. Malfliet, Am. J. Phys. 60, 650 (1992)

    ADS  MathSciNet  Google Scholar 

  28. W. Malfliet, W. Hereman, Phys. Scr. 54, 563 (1996)

    ADS  Google Scholar 

  29. A.M. Wazwaz, Appl. Math. Comput. 154, 714 (2004)

    Google Scholar 

  30. E. Fan, H. Zhang, Phys. Lett. A 246, 403 (1998)

    ADS  Google Scholar 

  31. M.L. Wang, Phys. Lett. A 213, 279 (1996)

    ADS  MathSciNet  Google Scholar 

  32. C.Q. Dai, J.F. Zhang, Chaos Solitons Fractals 27, 1042 (2006)

    ADS  MathSciNet  Google Scholar 

  33. E. Fan, J. Zhang, Phys. Lett. A 305, 383 (2002)

    ADS  MathSciNet  Google Scholar 

  34. J.H. He, X.H. Wu, Chaos Solitons Fractals 30, 700 (2006)

    ADS  MathSciNet  Google Scholar 

  35. H. Aminikhad, H. Moosaei, M. Hajipour, Numer. Methods Partial Differ. Equ. 26, 1427 (2009)

    Google Scholar 

  36. A.M. Wazwaz, Comput. Math. Appl. 50, 1685 (2005)

    MathSciNet  Google Scholar 

  37. A.M. Wazwaz, Math. Comput. Modell. 40, 499 (2004)

    Google Scholar 

  38. C. Yan, Phys. Lett. A 224, 77 (1996)

    ADS  MathSciNet  Google Scholar 

  39. M.A. Abdou, Chaos Solitons Fractals 31, 95 (2007)

    ADS  MathSciNet  Google Scholar 

  40. Y.J. Ren, H.Q. Zhang, Chaos Solitons Fractals 27, 959 (2006)

    ADS  MathSciNet  Google Scholar 

  41. J.L. Zhang, M.L. Wang, Y.M. Wang, Z.D. Fang, Phys. Lett. A 350, 103 (2006)

    ADS  Google Scholar 

  42. M.L. Wang, J.L. Zhang, X.Z. Li, Phys. Lett. A 372, 417 (2008)

    ADS  MathSciNet  Google Scholar 

  43. S. Zhang, J.L. Tong, W. Wang, Phys. Lett. A 372, 2254 (2008)

    ADS  Google Scholar 

  44. X. Lü, B. Tian, T. Xu, K.-J. Cai, W.J. Liu, Ann. Phys. 323, 2554 (2008)

    ADS  Google Scholar 

  45. H.Q. Zhang, B. Tian, X.H. Meng, X. Lu, W.J. Liu, Eur. Phys. J. B 72, 233 (2009)

    ADS  MathSciNet  Google Scholar 

  46. W.J. Liu, L. Huang, P. Huang, Y. Li, M. Lei, Appl. Math. Lett. 61, 80 (2016)

    MathSciNet  Google Scholar 

  47. X. Liu, H. Triki, Q. Zhou, M. Mirzazadeh, W.j. Liu, A. Biswas, M. Belic, Nonlinear Dyn. 95, 143 (2019)

    Google Scholar 

  48. J.G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, Nonlinear Dyn. 95, 1027 (2019)

    Google Scholar 

  49. D.J. Ding, D.Q. Jin, C.Q. Dai, Therm. Sci. 21, 1701 (2017)

    Google Scholar 

  50. Y.Y. Wang, L. Chen, C.Q. Dai, J. Zheng, Y. Fan, Nonlinear Dyn. 90, 1269 (2017)

    Google Scholar 

  51. B. Zhang, X.L. Zhang, C.Q. Dai, Nonlinear Dyn. 87, 2385 (2017)

    Google Scholar 

  52. C.Q. Dai, G.Q. Zhou, R.P. Chen, X.J. Lai, J. Zheng, Nonlinear Dyn. 88, 2629 (2017)

    Google Scholar 

  53. L.Q. Kong, J. Liu. D.Q. Jin, D.J. Ding, C.Q. Dai, Nonlinear Dyn. 87, 83 (2017)

    Google Scholar 

  54. C.Q. Dai, J. Liu, Y. Fan, D.G. Yu, Nonlinear Dyn. 88, 1373 (2017)

    Google Scholar 

  55. C.Q. Dai, R.P. Chen, Y.Y. Wang, Y. Fan, Nonlinear Dyn. 87, 1675 (2017)

    Google Scholar 

  56. C.Q. Dai, Y.Y. Wang, Y. Fan, D.G. Yu,, Nonlinear Dyn. 92, 1351 (2018)

    Google Scholar 

  57. A.M. Wazwaz, Appl. Math. Comput. 159, 559 (2004)

    MathSciNet  Google Scholar 

  58. F. Tascan, A. Bekir, Appl. Math. Comput. 215, 3134 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. E. Abdelrahman.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.Z., Alyamani, N.A. & Abdelrahman, M.A.E. A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation. Eur. Phys. J. Plus 134, 425 (2019). https://doi.org/10.1140/epjp/i2019-12811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12811-y

Navigation