Skip to main content
Log in

\(\Lambda\)CDM-like models with future singularities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We consider new models of dark energy with finite time future singularities, by introducing the pressure density as a function of the scale factor. This approach gives acceptable phenomenological models of dark energy, that resemble that of the cosmological constant up to the present, which face future singularities at finite time and finite scale factor. Exact scalar field model representation was found for quintessence, Big Rip and type III singularity models. The simple form of the equation of state allows to establish a relationship between its current value, w0, and the time or redshift at which the singularity takes place. The effect on the growth of matter perturbations is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. A.G. Riess et al., Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  4. M. Kowalski et al., Astrophys. J. 686, 749 (2008) arXiv:0804.4142

    Article  ADS  Google Scholar 

  5. M. Hicken et al., Astrophys. J. 700, 1097 (2009) arXiv:0901.4804 [astro-ph.CO]

    Article  ADS  Google Scholar 

  6. WMAP Collaboration (E. Komatsu et al.), Astrophys. J. Suppl. 180, 330 (2009) arXiv:0803.0547 [astro-ph]

    Article  Google Scholar 

  7. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010) arXiv:0907.1660 [astro-ph.CO]

    Article  ADS  Google Scholar 

  8. WMAP Collaboration (E. Komatsu et al.), Astrophys. J. Suppl. 192, 18 (2011) arXiv:1001.4538 [astro-ph.CO]

    Article  Google Scholar 

  9. R.R. Caldwell, Phys. Lett. B 545, 23 (2002) arXiv:astro-ph/9908168

    Article  ADS  Google Scholar 

  10. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005) arXiv:hep-th/0501025

    Article  ADS  Google Scholar 

  11. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, arXiv:1205.3421 [gr-qc]

  12. P.H. Frampton, T. Takahashi, Phys. Lett. B 557, 135 (2003) arXiv:astro-ph/0211544

    Article  ADS  Google Scholar 

  13. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003) arXiv:astro-ph/0302506

    Article  ADS  Google Scholar 

  14. J.D. Barrow, Class. Quantum Grav. 21, L79 (2004) arXiv:gr-qc/0403084

    Article  ADS  Google Scholar 

  15. J.D. Barrow, Class. Quantum Grav. 21, 5619 (2004) arXiv:gr-qc/0409062

    Article  ADS  Google Scholar 

  16. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004) arXiv:hep-th/0408170

    Article  ADS  Google Scholar 

  17. H. Stefancic, Phys. Rev. D 71, 084024 (2005) arXiv:astro-ph/0411630

    Article  ADS  Google Scholar 

  18. P.H. Frampton, K.J. Ludwick, R.J. Scherrer, Phys. Rev. D 84, 063003 (2011) arXiv:1106.4996v1 [astro-ph.CO]

    Article  ADS  Google Scholar 

  19. I. Brevik, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 103508 (2011) arXiv:1107.4642v2 [hep-th]

    Article  ADS  Google Scholar 

  20. L.N. Granda, E. Loaiza, Int. J. Mod. Phys. D 21, 1250002 (2012) arXiv:1111.2454 [hep-th]

    Article  ADS  Google Scholar 

  21. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004) arXiv:hep-th/0408170

    Article  ADS  Google Scholar 

  22. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010) arXiv:0911.4390 [hep-th]

    Article  ADS  Google Scholar 

  23. J.D. Barrow, S. Cotsakis, A. Tsokaros, Class. Quantum Grav. 27, 165017 (2010) arXiv:1004.2681 [gr-qc]

    Article  ADS  Google Scholar 

  24. L.P. Chimento, R. Lazkoz, Mod. Phys. Lett. A 19, 2479 (2004) arXiv:gr-qc/0405020

    Article  ADS  Google Scholar 

  25. A.V. Astashenok, S. Nojiri, S.D. Odintsov, R.J. Scherrer, Phys. Lett. B 713, 145 (2012) arXiv:1203.1976v1 [gr-qc]

    Article  ADS  Google Scholar 

  26. S. Nojiri, S.D. Odintsov, Phys. Rev. D 72, 023003 (2005) arXiv:hep-th/0505215

    Article  ADS  Google Scholar 

  27. S. Dutta, R.J. Scherrer, Phys. Lett. B 676, 12 (2009)

    Article  ADS  Google Scholar 

  28. M. Chevallier, D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001) arXiv:gr-qc/0009008

    Article  ADS  Google Scholar 

  29. E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003) arXiv:astro-ph/0208512

    Article  ADS  Google Scholar 

  30. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003) arXiv:astro-ph/0201498

    Article  ADS  Google Scholar 

  31. A. Al Mamon, K. Bamba, arXiv:1805.02854 [gr-qc]

  32. Zhong-Xu Zhai et al., Phys. Lett. B 727, 8 (2013)

    Article  ADS  Google Scholar 

  33. L. Wang, P.J. Steinhardt, Astrophys. J. 508, 483 (1998) arXiv:astro-ph/9804015

    Article  ADS  Google Scholar 

  34. E.V. Linder, A. Jenkins, Mon. Not. R. Astron. Soc. 346, 573 (2003) arXiv:astro-ph/0305286

    Article  ADS  Google Scholar 

  35. E.V. Linder, Phys. Rev. D 72, 043529 (2005) arXiv:astro-ph/0507263

    Article  ADS  Google Scholar 

  36. E.V. Linder, R.N. Cahn, Astropart. Phys. 28, 481 (2007) arXiv:astro-ph/0701317

    Article  ADS  Google Scholar 

  37. J.B. Dent, S. Dutta, L. Perivolaropoulos, Phys. Rev. D 80, 023514 (2009) arXiv:0903.5296 [astro-ph.CO]

    Article  ADS  Google Scholar 

  38. D. Huterer et al., Astropart. Phys. 63, 23 (2015)

    Article  ADS  Google Scholar 

  39. J.B. Dent, S. Dutta, Phys. Rev. D 79, 063516 (2009) arXiv:0808.2689 [astro-ph]

    Article  ADS  Google Scholar 

  40. R. Gannouji, D. Polarski, Phys. Rev. D 98, 083533 (2018) arXiv:1805.08230 [astro-ph.CO]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Granda.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granda, L.N. \(\Lambda\)CDM-like models with future singularities. Eur. Phys. J. Plus 134, 397 (2019). https://doi.org/10.1140/epjp/i2019-12756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12756-1

Navigation