Skip to main content
Log in

Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Shi, S. Araby, C.T. Gibson, Q. Meng, S. Zhu, J. Ma, Adv. Funct. Mater. 28, 1706705 (2018)

    Article  Google Scholar 

  2. J. Sun, J. Zhao, Mater. Sci. Eng. A 723, 1 (2018)

    Article  Google Scholar 

  3. R. Checchetto, A. Miotello, L. Nicolais, G. Carotenuto, J. Membrane Sci. 463, 196 (2014)

    Article  Google Scholar 

  4. A. Nieto, D. Lahiri, A. Agarwal, Mater. Sci. Eng. A 582, 338 (2013)

    Article  Google Scholar 

  5. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009)

    Article  Google Scholar 

  6. M. Rafiee, J. Rafiee, Z.-Z. Yu, N. Koratkar, Appl. Phys. Lett. 95, 223103 (2009)

    Article  ADS  Google Scholar 

  7. M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu et al., Small 6, 179 (2010)

    Article  Google Scholar 

  8. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer 52, 5 (2011)

    Article  Google Scholar 

  9. A. Montazeri, H. Rafii-Tabar, Phys. Lett. A 375, 4034 (2011)

    Article  ADS  Google Scholar 

  10. B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Carbon 60, 356 (2013)

    Article  Google Scholar 

  11. Y. Wang, J. Yu, W. Dai, Y. Song, D. Wang, L. Zeng et al., Polym. Compos. 36, 556 (2015)

    Article  Google Scholar 

  12. A. Vafamehr, M.E. Khodayar, Electr. J. 31, 40 (2018)

    Article  Google Scholar 

  13. A. Vafamehr, M.E. Khodayar, S.D. Manshadi, I. Ahmad, J. Lin, IEEE Trans. Smart Grid103052017

  14. A. Vafamehr, M.E. Khodayar, K. Abdelghany, IEEE Trans. Smart Grid 10, 305 (2019)

    Article  Google Scholar 

  15. M. Baibarac, P. Gómez-Romero, J. Nanosci. Nanotechnol. 6, 289 (2006)

    Article  Google Scholar 

  16. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Science 297, 787 (2002)

    Article  ADS  Google Scholar 

  17. J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Polymer 44, 5893 (2003)

    Article  Google Scholar 

  18. M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)

    Article  ADS  Google Scholar 

  19. N.K. Kothurkar, Solid State, Transparent, Cadmium Sulfide-polymer Nanocomposites, University of Florida, 2004

  20. J. Yang, H. Wu, S. Kitipornchai, Comput. Struct. 161, 111 (2017)

    Article  Google Scholar 

  21. C. Feng, S. Kitipornchai, J. Yang, Composites Part B 110, 132 (2017)

    Article  Google Scholar 

  22. M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi, A. Assempour, Proc. Inst. Mech. Eng. Part L 232, 625 (2018)

    Google Scholar 

  23. M. Habibi, R. Hashemi, M.F. Tafti, A. Assempour, J. Manufact. Proc. 31, 310 (2018)

    Article  Google Scholar 

  24. M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari, H. Lashini, J. Mater. Eng. Perform. 25, 382 (2016)

    Article  Google Scholar 

  25. M. Habibi, A. Ghazanfari, A. Assempour, R. Naghdabadi, R. Hashemi, Mech. Eng. 48, 379 (2017)

    Google Scholar 

  26. A. Ghazanfari, A. Assempuor, M. Habibi, R. Hashemi, Modares Mech. Eng. 16, 137 (2016)

    Google Scholar 

  27. A. Fazaeli, M. Habibi, A. Ekrami, Metall. Eng. 19, 84 (2016)

    Google Scholar 

  28. S.M.R. Hosseini, M. Habibi, A. Assempour, Modares Mech. Eng. 18, 174 (2018)

    Google Scholar 

  29. M. Ghadiri, N. Shafiei, H. Safarpour, Microsys. Technol. 23, 1045 (2017)

    Article  Google Scholar 

  30. M. Ghadiri, H. Safarpour, J. Therm. Stresses 40, 55 (2016)

    Article  Google Scholar 

  31. S. Shayan-Amin, H. Dalir, A. Farshidianfar, J. Mech. 25, 337 (2009)

    Article  Google Scholar 

  32. J.-L. Tsai, J.-F. Tu, Mater. & Design 31, 194 (2010)

    Article  Google Scholar 

  33. K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Eur. Phys. J. Plus 132, 115 (2017)

    Article  Google Scholar 

  34. K. Mohammadi, A. Rajabpour, M. Ghadiri, Comput. Mater. Sci. 148, 104 (2018)

    Article  Google Scholar 

  35. F. Ebrahimi, Z.E. Hajilak, M. Habibi, H. Safarpour, Proc. Inst. Mech. Eng. Part C 233, 4590 (2019)

    Article  Google Scholar 

  36. M. Ghadiri, N. Shafiei, H. Safarpour, Microsyst. Technol. 23, 1045 (2017)

    Article  Google Scholar 

  37. Z. Esmailpoor Hajilak, J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, H. Safarpour, Mech. Based Design Struct. Machines, https://doi.org/10.1080/15397734.2019.1566743

  38. A. Pourjabari, Z.E. Hajilak, A. Mohammadi, M. Habibi, H. Safarpour, Comput. Math. Appl. 77, 2608 (2019)

    Article  MathSciNet  Google Scholar 

  39. H. Safarpour, Z.E. Hajilak, M. Habibi, Int. J. Mech. Mater. Design, https://doi.org/10.1007/s10999-018-9431-8

  40. M. Ghadiri, H. Safarpour, Appl. Phys. A 122, 833 (2016)

    Article  ADS  Google Scholar 

  41. H. Safarpour, K. Mohammadi, M. Ghadiri, A. Rajabpour, Eur. Phys. J. Plus 132, 281 (2017)

    Article  Google Scholar 

  42. H. Safarpour, K. Mohammadi, M. Ghadiri, J. Mech. Behav. Mater. 26, 9 (2017)

    Article  Google Scholar 

  43. M. Shojaeefard, M. Mahinzare, H. Safarpour, H.S. Googarchin, M. Ghadiri, Appl. Math. Model. 61, 255 (2018)

    Article  MathSciNet  Google Scholar 

  44. H. Safarpour, B. Ghanbari, M. Ghadiri, Appl. Math. Model. 65, 428 (2019)

    Article  MathSciNet  Google Scholar 

  45. K. Mohammadi, M.M. Barouti, H. Safarpour, M. Ghadiri, J. Braz. Soc. Mech. Sci. Eng. 41, 93 (2019)

    Article  Google Scholar 

  46. F. Ebrahimi, H. Safarpour, Wind Struct. 27, 431 (2018)

    Google Scholar 

  47. H. Safarpour, S.A. Ghanizadeh, M. Habibi, Eur. Phys. J. Plus 133, 532 (2018)

    Article  Google Scholar 

  48. F. Ebrahimi, M. Habibi, H. Safarpour, Eng. Comput. (2018) https://doi.org/10.1007/s00366-018-0669-4

  49. S. Sahmani, M. Aghdam, Comput. Struct. 178, 97 (2017)

    Article  Google Scholar 

  50. S. Sahmani, M. Aghdam, Int. J. Mech. Sci. 131, 95 (2017)

    Article  Google Scholar 

  51. M.M. Barooti, H. Safarpour, M. Ghadiri, Eur. Phys. J. Plus 132, 6 (2017)

    Article  Google Scholar 

  52. S.F. Dehkordi, Y.T. Beni, Int. J. Mech. Sci. 128, 125 (2017)

    Article  Google Scholar 

  53. F. Kheibari, Y.T. Beni, Mater. Design 114, 572 (2017)

    Article  Google Scholar 

  54. M. Arefi, Eur. J. Mech.-A 70, 226 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  55. H. Razavi, A.F. Babadi, Y.T. Beni, Comput. Struct. 160, 1299 (2017)

    Article  Google Scholar 

  56. D.G. Ninh, D.H. Bich, Aerospace Sci. Technol. 77, 595 (2018)

    Article  Google Scholar 

  57. X.-Q. Fang, C.-S. Zhu, Comput. Struct. 160, 1191 (2017)

    Article  Google Scholar 

  58. H. Eftekhar, H. Zeynali, M. Nasihatgozar, Mech. Adv. Mater. Struct. 25, 1 (2018)

    Article  Google Scholar 

  59. M. Mohammadimehr, S. Okhravi, S. Akhavan Alavi, J. Vibrat. Control 24, 1551 (2018)

    Article  Google Scholar 

  60. C.-S. Zhu, X.-Q. Fang, J.-X. Liu, H.-Y. Li, Eur. J. Mech.-A 66, 423 (2017)

    Article  Google Scholar 

  61. V.K. Singh, S.K. Panda, J. Vibrat. Control 23, 2078 (2017)

    Article  Google Scholar 

  62. J. Fan, J. Huang, J. Ding, J. Zhang, Adv. Mech. Eng. 9, 1687814017711811 (2017)

    Google Scholar 

  63. M. Mahinzare, H. Ranjbarpur, M. Ghadiri, Mech. Syst. Signal Proc. 100, 188 (2018)

    Article  ADS  Google Scholar 

  64. J. Fang, J. Gu, H. Wang, Int. J. Mech. Sci. 136, 188 (2018)

    Article  Google Scholar 

  65. M. Song, S. Kitipornchai, J. Yang, Comput. Struct. 159, 579 (2017)

    Article  Google Scholar 

  66. Q. Wang, Eng. Struct. 24, 199 (2002)

    Article  Google Scholar 

  67. M. Nasihatgozar, S. Khalili, J. Appl. Comput. Mech. 3, 16 (2017)

    Google Scholar 

  68. S. Khalili, Y. Mohammadi, Eur. J. Mech.-A 35, 61 (2012)

    Article  Google Scholar 

  69. A. Pourmoayed, K.M. Fard, M. Shahravi, Latin Am. J. Solids Struct. 14, 714 (2017)

    Article  Google Scholar 

  70. F. Yang, A. Chong, D. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  71. L. Ke, Y. Wang, J. Reddy, Comput. Struct. 116, 626 (2014)

    Article  Google Scholar 

  72. R. Bellman, J. Casti, J. Math. Anal. Appl. 34, 235 (1971)

    Article  MathSciNet  Google Scholar 

  73. R. Bellman, B. Kashef, J. Casti, J. Comput. Phys. 10, 40 (1972)

    Article  ADS  Google Scholar 

  74. C. Shu, Differential quadrature and its application in engineering (Springer Science & Business Media, 2012)

  75. C. Shu, B.E. Richards, Int. J. Numer. Methods Fluids 15, 791 (1992)

    Article  ADS  Google Scholar 

  76. S. Rajasekaran, Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB (Elsevier, 2009)

  77. H. Safarpour, J. Pourghader, M. Habibi, J. Vibrat. Control 25, 1543 (2019)

    Article  Google Scholar 

  78. N. Shafiei, M. Kazemi, M. Ghadiri, Physica E 83, 74 (2016)

    Article  ADS  Google Scholar 

  79. L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Smart Mater. Struct. 23, 125036 (2014)

    Article  Google Scholar 

  80. H. Wu, S. Kitipornchai, J. Yang, Mater. Design 132, 430 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Safarpour.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, M., Hashemabadi, D. & Safarpour, H. Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur. Phys. J. Plus 134, 307 (2019). https://doi.org/10.1140/epjp/i2019-12742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12742-7

Navigation