Skip to main content
Log in

Material composition evaluation of historical Cu alloy aquamanilia by complementary XRF and LIBS measurements

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The material composition of seven historical aquamanilia from museum collections in Kraków and Gdańsk were examined using X-ray fluorescence (XRF) spectrometry and micro-ablation sampling by means of laser-induced breakdown spectroscopy (LIBS) to better understand the materials found in these objects as well as for providing information that can be used towards authentication and dating studies. An additional set of Cu-alloy objects and also a late medieval XV century bronze aquamanile served for reference and comparison. It was found that four of the figures were casted using quaternary and ternary Cu alloys characterized by a Zn content in the range 17.5-23%, admixtures of Sn and Pb below 7%, and presence of impurities like Fe, Ni, Ag, Si, Ba, and Ca. The observed composition similarities were confirmed by statistically processed data. This indicated that the animal figures (lions) are most probably brass replicas of the medieval ones and were produced during the XVIII-XX centuries. In situ measurements were adequate despite inaccuracies associated with signal intensity fluctuations due to surface geometry effects, the presence of patinas, corrosion or contamination, and systematic errors originating from calibration. The proposed complementary approach that uses portable XRF and LIBS instruments ensures consistent data for compositional studies on historical alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pernicka, Archaeometallurgy in Global Perspective, edited by B. Roberts, C. Thornton (Springer, New York, 2014)

  2. M.F. Guerra, Radiation in Art and Archaeology, edited by D.C. Creagh, D.A. Bradley (Elsevier, New York, 2000)

  3. I. De Ryck, A. Adriaens, F. Adams, Archaeometry 45, 579 (2003)

    Article  Google Scholar 

  4. P. Dillmann, D. Watkinson, E. Angelini, A. Adriaens, Corrosion and Conservation of Cultural Heritage Metallic Artefacts (Woodhead, Cambridge, UK, 2013)

  5. M.C. Bernard, S. Joiret, Electrochim. Acta 54, 5199 (2009)

    Article  Google Scholar 

  6. . Selwyn, Metals and Corrosion: A Handbook for the Conservation Professional (Canadian Conservation Institute, Ottawa, CA, 2004)

  7. A. Arafat, M. Na’es, V. Kantarelou, N. Haddad, A. Giakoumaki, V. Argyropoulos, D. Anglos, A.-G. Karydas, J. Cult. Herit. 14, 261 (2013)

    Article  Google Scholar 

  8. L. Ciupiński, E. Fortuna-Zaleśna, H. Garbacz, A. Koss, K.J. Kurzydłowski, J. Marczak, J. Mróz, T. Onyszczuk, A. Rycyk, A. Sarzyński, W. Skrzeczanowski, M. Strzelec, A. Zatorska, G.Z. Zukowska, Sensors 10, 4926 (2010)

    Article  Google Scholar 

  9. R. Cesareo, M. Ferretti, G.E. Gigante, G. Guida, P. Moioli, S. Ridolfi, C. Roldán Garcia, X-Ray Spectrom. 36, 167 (2007)

    Article  ADS  Google Scholar 

  10. A. Nevin, G. Spoto, D. Anglos, Appl. Phys. A 106, 339 (2012)

    Article  ADS  Google Scholar 

  11. I. Zmuda-Trzebiatowska, A. Fietkiewicz, G. Śliwiński, Solid State Phenom. 183, 233 (2011)

    Article  Google Scholar 

  12. A. Iwulska, R. Jendrzejewski, M. Sawczak, I. Żmuda-Trzebiatowska, G. Śliwiński, in Proceedings of the Lasers in the Conservation of Artworks VIII, 2010, edited by R. Radvan, J.F. Asmus, M. Castillejo, P. Pouli, A. Nevin (CRC, Boca Raton, 2010)

  13. J. Agresti, A. Mencaglia, S. Siano, Anal. Bioanal. Chem. 395, 2255 (2009)

    Article  Google Scholar 

  14. L. Caneve, F. Colao, R. Fantoni, V. Spizzichino, Appl. Phys. A 85, 151 (2006)

    Article  ADS  Google Scholar 

  15. A.N. Shugar, J.L. Mass, Handheld XRF for Art and Archaeology (Leuven University, Leuven, BE, 2013)

  16. E. Frahm, R.C.P. Doonan, J. Archaeol. Sci. 40, 1425 (2013)

    Article  Google Scholar 

  17. S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, V. Zafiropulos, J. Cult. Herit. 1, 287 (2000)

    Article  Google Scholar 

  18. M. Simileanu, Rom. Rep. Phys. 68, 203 (2016)

    Google Scholar 

  19. M. Castillejo, M. Martín, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R.J.H. Clark, J. Cult. Herit. 1, S297 (2000)

    Article  Google Scholar 

  20. K. Ochocińska, M. Sawczak, M. Martin, J. Bredal-Jørgensen, A. Kamińska, G. Śliwiński, Rad. Phys. Chem. 68, 227 (2003)

    Article  ADS  Google Scholar 

  21. V. Spizzichino, R. Fantoni, Spectrochim. Acta B 99, 201 (2014)

    Article  ADS  Google Scholar 

  22. D. Anglos, V. Detalle, S. Musazzi, U. Perini (Editors), Laser Induced Breakdown Spectroscopy (Springer, Berlin, Heidelberg, 2014)

  23. E.H. Lehmann, P. Vontobel, E. Deschler-Erb, M. Soares, Nucl. Instrum. Methods Phys. Res. A 542, 68 (2005)

    Article  ADS  Google Scholar 

  24. M.P. Morigi, F. Casali, M. Bettuzi, R. Brancaccio, V. D’Errico, Appl. Phys. A Mater. 100, 653 (2010)

    Article  ADS  Google Scholar 

  25. G. Sarah, B. Gratuze, J.N. Barrandon, J. Anal. At. Spectrom. 22, 1163 (2007)

    Article  Google Scholar 

  26. M. Dowsett, A. Adriaens, Nucl. Instrum. Methods Phys. Res. B 226, 38 (2004)

    Article  ADS  Google Scholar 

  27. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, N. Omenneto, I. Gornushkin, B.W. Smith, J.D. Winefordner, Laser-Induced Breakdown Spectroscopy, Fundamental and Applications, edited by A.W. Miziolek, V. Palleschi, I. Schechter (Cambridge University, Cambridge, UK, 2006)

  28. P. Barnet, P. Dandridge (Editors), Lions, Dragons, and Other Beasts: Aquamanila of the Middle Ages, Vessels for Church and Fid (Yale University Press, New Haven, CT, 2006)

  29. O. Werner, Zusammensetzung neuzeitlicher Nachgüsse und Fälschungen mittelalterlicher Messinge und Bronzen (Archäometrie, Berliner Beitr. 5, 11 1980)

  30. O.v. Falke, E. Meyer, Romanische Leuchter und Gefäße Gießgefäße der Gotik (Deutsche Verlag für Kunstwissenschaft, Berlin, 1937)

  31. H.P. Lockner, Kunst Antiq. 5, 28 (1981)

    Google Scholar 

  32. Metropolitan Museum of Art (2018) http://www.metmuseum.org/

  33. M. McAllister, Western Australia, Bull. Australasian Inst. Mar. Archaeol. 36, 36 (2012)

    Google Scholar 

  34. G. Pantazopoulos, A. Vazdirvanidis, Mater. Sci. Eng. 55, 012015 (2014)

    Google Scholar 

  35. H. Sugawara, H. Ebiko, Corrosion Sci. 7, 513 (1967)

    Article  Google Scholar 

  36. D.A. Scott, Conservation, Paul Getty Ancient & Historic Metals: Conservation and Scientific Research (Conservation Institute, Malibou California, USA, 2002)

  37. K.R. Trethewey, I. Pinwill, Surf. Coat. Technol. 30, 289 (1987)

    Article  Google Scholar 

  38. M.M. Megahed, Int. J. Conser. Sci. 5, 161 (2014)

    Google Scholar 

  39. F. Schweitzer, Proceedings of Ancient and Historic Metals: Conservation and Scientific Research Symposium organized by the Paul Getty Museum, Los Angeles, 1991, edited by D.A. Scott, J. Podany, B.B. Considine (J. Paul Getty Museum, California, 1994)

  40. L. Campanella, O. Colacichi Alessandri, M. Ferretti, S.H. Plattner, Corros. Sci. 51, 2183 (2009)

    Article  Google Scholar 

  41. M. Morcillo, E. Almeida, M. Marrocos, B. Rosales, Corrosion 57, 967 (2001)

    Article  Google Scholar 

  42. J.M. del Hoyo-Melendez, P. Świt, M. Matosz, M. Woźniak, A. Klisińska-Kopacz, L. Bratasz, Nucl. Instrum. Methods Phys. Res. B 349, 6 (2015)

    Article  ADS  Google Scholar 

  43. National Institute of Standards and Technology (2018) http://physics.nist.gov/asd

  44. A.L. Bacon, A Technical Study of the Alloy Compositions of ‘Brass’ Wind Musical Instruments (1651-1867) Utilizing Non-Destructive X-ray Fluorescence, PhD Dissertation University College London (ProQuest, Ann Arbor, US, 2003)

  45. P. Craddock, Scientific Investigation of Copies, Fakes and Forgeries (Elsevier, New York, US, 2009)

  46. K.H.A. Janssens, F.C.V. Adams, A. Rindby, Microscopic X-ray Fluorescence Analysis (Wiley, New York, US, 2000)

  47. B. Constantinescu, R. Bugoi, E. Oberländer-Tarnoveanu, K. Parvan, Rom. Rep. Phys. 57, 1021 (2005)

    Google Scholar 

  48. M.T. Doménech-Carbó, F. Di Turo, N. Montoya, A.F. Catalli, A. Doménech-Carbó, C. De Vito, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  49. R. Jenkins, X-Ray Fluorescence Spectrometry, 2nd ed. (John Wiley and Sons, New York, NY, 1999)

  50. M. Ferretti, C. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, E. Console, P. Palaia, Spectrochim. Acta B 62, 1512 (2007)

    Article  ADS  Google Scholar 

  51. L. Pardini, A. El Hassan, M. Ferretti, A. Foresta, S. Legnaioli, G. Lorenzetti, E. Nebbia, F. Catalli, M.A. Harith, D. Diaz Pace, F. Anabitarte Garcia, M. Scuotto, V. Palleschi, Spectrochim. Acta B 74-75, 156 (2012)

    Article  ADS  Google Scholar 

  52. V. Lazic, M. Vadrucci, R. Fantoni, M. Chiari, A. Mazzinghi, A. Gorghinian, Spectrochim. Acta B 149, 1 (2018)

    Article  ADS  Google Scholar 

  53. R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G.S. Senesi, A. De Giacomo, Sensors 10, 7434 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. del Hoyo-Meléndez.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Żmuda-Trzebiatowska, I., del Hoyo-Meléndez, J.M. & Śliwiński, G. Material composition evaluation of historical Cu alloy aquamanilia by complementary XRF and LIBS measurements. Eur. Phys. J. Plus 134, 269 (2019). https://doi.org/10.1140/epjp/i2019-12705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12705-0

Navigation