Skip to main content
Log in

Impact of the pre-equilibrium stage of ultra-relativistic heavy ion collisions: isotropization and photon production

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We present a model in which gluon and quark pairs are produced by means of the Schwinger mechanism from the decay of color-electric flux tubes, which are expected to be produced in the early stage of ultra-relativistic heavy ion collisions. The evolution equations of the initial field are coupled to the relativistic transport equation which describes the dynamics of the many particle system and is formulated in terms of a fixed viscosity over entropy density ratio \( \eta\)/s. This self-consistent solution of the problem allows to take into account the backreaction of the color currents on the classical field. We study isotropization and thermalization of the plasma produced by the field decay for a expanding geometry in \( 1+1{\rm D}\) and in \( 3+1{\rm D}\) . We find that the initial color-electric field decays within 1fm/c ; in the case of large \( \eta\)/s oscillations of the field appear along the whole temporal evolution of the system, affecting also the ratio between longitudinal and transverse pressure. In the case of small viscosities (\( \eta/s\lesssim3/4\pi\)) we find an equilibration time less than 1 fm/c, in agreement with the common lore of hydrodynamics. Including the pertinent scattering processes into the collision integral of the Boltzmann equation we investigate photon production within our model for the pre-equilibrium dynamics and with simulations starting with equilibrium initial conditions. Thus, we are able to identify the contribution of the early-stage to the photon spectrum in Au-Au collisions at RHIC \(\sqrt{s_{NN}}=200\) GeV and in Pb-Pb collisions at LHC \( \sqrt{s_{NN}}=2.76\) TeV. We find that there is no dark age in relativistic heavy ion collisions: early-stage photons enhance the direct photon spectrum in the intermediate transverse momentum region (\( p_{T}\gtrsim 1.5\)-2 GeV depending on the collision energy) and their abundance is comparable with that produced by a thermalized quark-gluon plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Lappi, L. McLerran, Nucl. Phys. A 772, 200 (2006)

    Article  ADS  Google Scholar 

  2. F. Gelis, R. Venugopalan, Acta Phys. Pol. B 37, 3253 (2006)

    ADS  Google Scholar 

  3. T. Lappi, J. Phys. G 35, 104052 (2008)

    Article  ADS  Google Scholar 

  4. P.B. Arnold, J. Lenaghan, G.D. Moore, L.G. Yaffe, Phys. Rev. Lett. 94, 072302 (2005)

    Article  ADS  Google Scholar 

  5. J. Randrup, S. Mrowczynski, Phys. Rev. C 68, 034909 (2003)

    Article  ADS  Google Scholar 

  6. S. Mrowczynski, Acta Phys. Pol. B 37, 427 (2006)

    ADS  Google Scholar 

  7. A. Rebhan, P. Romatschke, M. Strickland, Phys. Rev. Lett. 94, 102303 (2005)

    Article  ADS  Google Scholar 

  8. A. Rebhan, P. Romatschke, M. Strickland, J. High Energy Phys. 09, 041 (2005)

    Article  ADS  Google Scholar 

  9. M. Ruggieri, J.H. Liu, L. Oliva, G.X. Peng, V. Greco, Phys. Rev. D 97, 076004 (2018)

    Article  ADS  Google Scholar 

  10. P.F. Kolb, U.W. Heinz, in Quark Gluon Plasma 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2003) pp. 634--714

  11. Z. Xu, C. Greiner, Phys. Rev. C 71, 064901 (2005)

    Article  ADS  Google Scholar 

  12. M. Ruggieri, F. Scardina, S. Plumari, V. Greco, Phys. Rev. C 89, 054914 (2014)

    Article  ADS  Google Scholar 

  13. M. Ruggieri, A. Puglisi, L. Oliva, S. Plumari, F. Scardina, V. Greco, Phys. Rev. C 92, 064904 (2015)

    Article  ADS  Google Scholar 

  14. Y.V. Kovchegov, A. Taliotis, Phys. Rev. C 76, 014905 (2007)

    Article  ADS  Google Scholar 

  15. M.P. Heller, R.A. Janik, P. Witaszczyk, Phys. Rev. Lett. 108, 201602 (2012)

    Article  ADS  Google Scholar 

  16. W. van der Schee, P. Romatschke, S. Pratt, Phys. Rev. Lett. 111, 222302 (2013)

    Article  ADS  Google Scholar 

  17. L. Bellantuono, P. Colangelo, F. De Fazio, F. Giannuzzi, J. High Energy Phys. 07, 053 (2015)

    Article  ADS  Google Scholar 

  18. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  19. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979)

    Article  ADS  Google Scholar 

  21. N.K. Glendenning, T. Matsui, Phys. Rev. D 28, 2890 (1983)

    Article  ADS  Google Scholar 

  22. A. Bialas, W. Czyz, Phys. Rev. D 30, 2371 (1984)

    Article  ADS  Google Scholar 

  23. A. Bialas, W. Czyz, Nucl. Phys. B 267, 242 (1986)

    Article  ADS  Google Scholar 

  24. M. Gyulassy, A. Iwazaki, Phys. Lett. B 165, 157 (1985)

    Article  ADS  Google Scholar 

  25. H.T. Elze, M. Gyulassy, D. Vasak, Nucl. Phys. B 276, 706 (1986)

    Article  ADS  Google Scholar 

  26. H.T. Elze, M. Gyulassy, D. Vasak, Phys. Lett. B 177, 402 (1986)

    Article  ADS  Google Scholar 

  27. G. Gatoff, A.K. Kerman, T. Matsui, Phys. Rev. D 36, 114 (1987)

    Article  ADS  Google Scholar 

  28. A. Bialas, W. Czyz, A. Dyrek, W. Florkowski, Nucl. Phys. B 296, 611 (1988)

    Article  ADS  Google Scholar 

  29. A. Bialas, W. Czyz, A. Dyrek, W. Florkowski, R.B. Peschanski, Phys. Lett. B 229, 398 (1989)

    Article  ADS  Google Scholar 

  30. A. Dyrek, W. Florkowski, Nuovo Cimento A 102, 1013 (1989)

    Google Scholar 

  31. W. Florkowski, Phenomenology of Ultra-Relativistic Heavy Ion Collisions (World Scientific, Singapore, 2010)

  32. R. Ryblewski, W. Florkowski, Phys. Rev. D 88, 034028 (2013)

    Article  ADS  Google Scholar 

  33. F. Gelis, N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016)

    Article  ADS  Google Scholar 

  34. J.I. Kapusta, P. Lichard, D. Seibert, Phys. Rev. D 44, 2774 (1991) Phys. Rev. D 47

    Article  ADS  Google Scholar 

  35. R. Baier, H. Nakkagawa, A. Niegawa, K. Redlich, Phys. Rev. D 45, 4323 (1992)

    Article  ADS  Google Scholar 

  36. P.B. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 12, 009 (2001)

    Article  ADS  Google Scholar 

  37. S. Turbide, R. Rapp, C. Gale, Phys. Rev. C 69, 014903 (2004)

    Article  ADS  Google Scholar 

  38. J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore, D. Teaney, J. High Energy Phys. 05, 010 (2013)

    Article  ADS  Google Scholar 

  39. J. Ghiglieri, O. Kaczmarek, M. Laine, F. Meyer, Phys. Rev. D 94, 016005 (2016)

    Article  ADS  Google Scholar 

  40. B. Schenke, M. Strickland, Phys. Rev. D 76, 025023 (2007)

    Article  ADS  Google Scholar 

  41. L. Bhattacharya, R. Ryblewski, M. Strickland, Phys. Rev. D 93, 065005 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. F.M. Liu, T. Hirano, K. Werner, Y. Zhu, Phys. Rev. C 79, 014905 (2009)

    Article  ADS  Google Scholar 

  43. F.M. Liu, S.X. Liu, Phys. Rev. C 89, 034906 (2014)

    Article  ADS  Google Scholar 

  44. R. Chatterjee, H. Holopainen, T. Renk, K.J. Eskola, Phys. Rev. C 85, 064910 (2012)

    Article  ADS  Google Scholar 

  45. R. Chatterjee, H. Holopainen, I. Helenius, T. Renk, K.J. Eskola, Phys. Rev. C 88, 034901 (2013)

    Article  ADS  Google Scholar 

  46. M. Chiu, T.K. Hemmick, V. Khachatryan, A. Leonidov, J. Liao, L. McLerran, Nucl. Phys. A 900, 16 (2013)

    Article  ADS  Google Scholar 

  47. O. Linnyk, W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 89, 034908 (2014)

    Article  ADS  Google Scholar 

  48. O. Linnyk, V. Konchakovski, T. Steinert, W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 92, 054914 (2015)

    Article  ADS  Google Scholar 

  49. O. Linnyk, E.L. Bratkovskaya, W. Cassing, Prog. Part. Nucl. Phys. 87, 50 (2016)

    Article  ADS  Google Scholar 

  50. B. Schenke, C. Gale, S. Jeon, Phys. Rev. C 80, 054913 (2009)

    Article  ADS  Google Scholar 

  51. C. Shen, U.W. Heinz, J.F. Paquet, C. Gale, Phys. Rev. C 89, 044910 (2014)

    Article  ADS  Google Scholar 

  52. J.F. Paquet, C. Shen, G.S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016)

    Article  ADS  Google Scholar 

  53. H. van Hees, M. He, R. Rapp, Nucl. Phys. A 933, 256 (2015)

    Article  ADS  Google Scholar 

  54. V. Vovchenko et al., PoS BORMIO 2016, 039 (2016)

    Google Scholar 

  55. L. Oliva, M. Ruggieri, S. Plumari, F. Scardina, G.X. Peng, V. Greco, Phys. Rev. C 96, 014914 (2017)

    Article  ADS  Google Scholar 

  56. J. Berges, K. Reygers, N. Tanji, R. Venugopalan, Phys. Rev. C 95, 054904 (2017)

    Article  ADS  Google Scholar 

  57. M. Greif, F. Senzel, H. Kremer, K. Zhou, C. Greiner, Z. Xu, Phys. Rev. C 95, 054903 (2017)

    Article  ADS  Google Scholar 

  58. I. Iatrakis, E. Kiritsis, C. Shen, D.L. Yang, J. High Energy Phys. 04, 035 (2017)

    Article  ADS  Google Scholar 

  59. A. Ayala, J.D. Castano-Yepes, C.A. Dominguez, L.A. Hernandez, EPJ Web of conferences 141, 02007 (2017)

    Article  Google Scholar 

  60. A. Ayala et al., Phys.Rev. D 96, 014023 (2017) Phys. Rev. D 96

    Article  ADS  Google Scholar 

  61. G.V. Dunne, in From Fields to Strings, edited by M. Shifman, Vol. 1 (World Scientific, Singapore, 2005) pp. 445--522

  62. F. Hebenstreit, J. Berges, D. Gelfand, Phys. Rev. Lett. 111, 201601 (2013)

    Article  ADS  Google Scholar 

  63. F. Hebenstreit, J. Berges, D. Gelfand, Phys. Rev. D 87, 105006 (2013)

    Article  ADS  Google Scholar 

  64. F. Gelis, N. Tanji, Phys. Rev. D 87, 125035 (2013)

    Article  ADS  Google Scholar 

  65. G.C. Nayak, Phys. Rev. D 72, 125010 (2005)

    Article  ADS  Google Scholar 

  66. F. Cooper, G.C. Nayak, Phys. Rev. D 73, 065005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  67. G.S. Bali, Phys. Rept. 343, 1 (2001)

    Article  ADS  Google Scholar 

  68. G. Ferini, M. Colonna, M. Di Toro, V. Greco, Phys. Lett. B 670, 325 (2009)

    Article  ADS  Google Scholar 

  69. S. Plumari, A. Puglisi, F. Scardina, V. Greco, Phys. Rev. C 86, 054902 (2012)

    Article  ADS  Google Scholar 

  70. S. Plumari, V. Greco, AIP Conf. Proc. 1422, 56 (2012)

    Article  ADS  Google Scholar 

  71. S. Plumari, A. Puglisi, M. Colonna, F. Scardina, V. Greco, J. Phys. Conf. Ser. 420, 012029 (2013)

    Article  Google Scholar 

  72. M. Ruggieri, F. Scardina, S. Plumari, V. Greco, Phys. Lett. B 727, 177 (2013)

    Article  ADS  Google Scholar 

  73. A. Puglisi, S. Plumari, V. Greco, Phys. Rev. D 90, 114009 (2014)

    Article  ADS  Google Scholar 

  74. S. Plumari, G.L. Guardo, F. Scardina, V. Greco, Phys. Rev. C 92, 054902 (2015)

    Article  ADS  Google Scholar 

  75. S. Plumari, G.L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015)

    Article  ADS  Google Scholar 

  76. Z. Xu, C. Greiner, H. Stocker, Phys. Rev. Lett. 101, 082302 (2008)

    Article  ADS  Google Scholar 

  77. Z. Xu, C. Greiner, Phys. Rev. C 79, 014904 (2009)

    Article  ADS  Google Scholar 

  78. E.L. Bratkovskaya, W. Cassing, V.P. Konchakovski, O. Linnyk, Nucl. Phys. A 856, 162 (2011)

    Article  ADS  Google Scholar 

  79. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, A Course of Theoretical Physics, Vol. 8 (Pergamon Press, Oxford, 1960)

  80. T. Epelbaum, F. Gelis, Phys. Rev. Lett. 111, 232301 (2013)

    Article  ADS  Google Scholar 

  81. D.A. Teaney, in Quark Gluon Plasma 4, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2003) pp. 207--266

  82. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (University Press, Cambridge, 2011)

  83. M. Ruggieri, S. Plumari, F. Scardina, V. Greco, Nucl. Phys. A 941, 201 (2015)

    Article  ADS  Google Scholar 

  84. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 91, 064904 (2015)

    Article  ADS  Google Scholar 

  85. STAR Collaboration (L. Adamczyk et al.), Phys. Lett. B 770, 451 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Oliva.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, L. Impact of the pre-equilibrium stage of ultra-relativistic heavy ion collisions: isotropization and photon production. Eur. Phys. J. Plus 134, 306 (2019). https://doi.org/10.1140/epjp/i2019-12699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12699-5

Navigation