Skip to main content

Advertisement

Log in

Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels

Pragmatic approach, memory kernel correspondence requirement and analyses

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The article investigates implementation of fractional operators with non-singular memories (Caputo-Fabrizio) and Atangana-Baleanu (ABC) derivatives in response to functions and constitutive equations of linear viscoelastic models. The analysis focuses on the adequate selection of fractional operators with the strong requirement that stress relaxation function (approximating experimental data) and memory function of the operator coincide. As a basic step in the implementation of the non-singular fractional operators in linear viscoelastic models, both the Prony decomposition of stress relaxation curves and the approximation by the Mittag-Leffler function of one parameter are discussed. It is demonstrated that the Prony decomposition naturally leads to application of Caputo-Fabrizio operators in the constitutive equations of hereditary type. The resulting equations are two-fractional order models with constructions similar to the Bagley-Torvik equation. In addition, application of the Caputo-Fabrizio and ABC derivatives to ordinary Maxwell, Kelvin-Voigt and Zener models, by formalistic fractionalization and determination of the stress relaxation moduli and creep compliances applying formal convolution interconversion, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  2. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Google Scholar 

  3. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  4. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Google Scholar 

  5. A. Atangana, S.T.A. Badr, Entropy 17, 4439 (2015)

    ADS  MathSciNet  Google Scholar 

  6. A. Atangana, S.T.A. Badr, Adv. Mech. Eng. (2015) https://doi.org/10.1177/1687814015591937

  7. A. Atangana, J.J. Nieto, Adv. Mech. Eng. (2015) https://doi.org/10.1177/1687814015613758

  8. J.F. Gomez-Aguilar, H. Yepez-Martinez, C. Calderon-Ramon, I. Cruz-Orduña, R. Fabricio Escobar-Jimenez, Hugo, V. Olivares-Peregrino, Entropy 17, 6239 (2015)

    ADS  MathSciNet  Google Scholar 

  9. J. Hristov, Frontiers in Fractional Calculus, 2017, edited by S. Bhalekar (Bentham Science Publishers, Sharjah, 2017) p. 269

  10. D. Baleanu, A. Fernandez, Commun. Nonlinear Sci. Numer. Simul. 59, 444 (2018)

    ADS  MathSciNet  Google Scholar 

  11. A.C. Pipkin, Lectures on Viscoelasticity Theory, 2nd ed. (Springer-Verlag, Berlin, 1972)

  12. N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behaviour: An Introduction (Springer-Verlag, New York, 1989)

  13. J. Ciambella, A. Paolone, S. Vidoli, Mech. Mater. 42, 932 (2010)

    Google Scholar 

  14. J. Ciambella, A. Paolone, S. Vidoli, J. Mech. Behav. Biomed. Mater. 37, 286 (2014)

    Google Scholar 

  15. R.M. Cristensen, Theory of Viscoelasticity: An introduction (Academic Press, New York, 1982)

  16. A. Drozdov, Finite elasticity and viscoelasticity (World Scientific, Singapore, 1996)

  17. A. Drozdov, Int. J. Solids Struct. 34, 2685 (1997)

    Google Scholar 

  18. W.N. Findley, J.S. Lai, K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials (North-Holland Pub, New York, 1974)

  19. W. Flugge, Viscoelasticity, 2nd ed. (Springer-Verlag, Berlin, 1975)

  20. D. Gutierrez-Lemini, Engineering Viscoelasticity (Springer, New York, 2014)

  21. J.W. Kim, G.A. Medvedev, J.M. Caruthers, Polymer 54, 5993 (2013)

    Google Scholar 

  22. A. Kosa, S. Berezvai, Mater. Today: Proc. 3, 1003 (2016)

    Google Scholar 

  23. J. Lai, A. Bakker, Polymer 36, 93 (1995)

    Google Scholar 

  24. K. Laksari, M. Shafieian, K. Darvish, J. Biomech. 45, 642 (2012)

    Google Scholar 

  25. R.C. Lin, Mech. Res. Commun. 28, 365 (2001)

    Google Scholar 

  26. J. Padovan, Y. Guo, J. Franklin Inst. 325, 247 (1988)

    Google Scholar 

  27. J. Hristov, Math. Model. Natur. Phenom. (2018) https://doi.org/10.1051/mmnp/2018067

  28. J. Hristov, Front. Phys. (2018) https://doi.org/10.3389/fphy.2018.00135

  29. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  30. M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)

    ADS  Google Scholar 

  31. G.W. Scott-Blair, M. Reiner, Appl. Sci. Res. A 2, 225 (1951)

    Google Scholar 

  32. G.W. Scott-Blair, Rheol. Acta 6, 201 (1965)

    Google Scholar 

  33. G.W. Scott-Blair, Rheol. Acta 11, 237 (1972)

    Google Scholar 

  34. S. Carillo, C. Giorgi, Viscoelastic and Viscoplastic Materials (IntechOpen, Split, 2016) https://doi.org/10.5772/64251

  35. P.G. Nutting, J. Franklin Inst. 191, 679 (1921)

    Google Scholar 

  36. P.G. Nutting, J. Franklin Inst. 242, 449 (1946)

    Google Scholar 

  37. G.R. de Prony, J. Ecole Polytech. 1, 24 (1795)

    Google Scholar 

  38. J.E. Soussou, F. Moavenzadeh, M.H. Gradowczyk, J. Rheol. 14, 573 (1970)

    ADS  Google Scholar 

  39. T.D. Chen, NASA TM 2000-210123, ARL-TR-2206 (Langley Res. Center, Virginia, 2000)

  40. H. Brinson, L. Brinson, Polymer Engineering Science and Viscoelasticity (Springer, New York, 2008)

  41. S.W. Park, R.A. Schapery, Int. J. Solids Sruct. 36, 1653 (1999)

    Google Scholar 

  42. J. Luk-Cyr, T. Crochon, C. Li, M. Levesque, Mech. Time-Depend. Mater. 17, 53 (2013)

    ADS  Google Scholar 

  43. R.J. Loy, F.R. de Hoog, R.S. Anderssen, J. Rheol. 59, 1261 (2015)

    ADS  Google Scholar 

  44. R.J. Loy, R.S. Aderssen, SIAM J. Math Anal. 46, 2008 (2014)

    MathSciNet  Google Scholar 

  45. R.S. Lakes, R. Vanderby, J. Biomech. Eng. 121, 612 (1999)

    Google Scholar 

  46. R.L. Bagley, P.J. Torvik, J. Rheol. 30, 133 (1986)

    ADS  Google Scholar 

  47. R.L. Bagley, P.J. Torvik, AIAA J. 21, 741 (1983)

    ADS  Google Scholar 

  48. Yu.A. Rossikhin, M. Shitikova, Shock Vib. Digest. 36, 3 (2004)

    Google Scholar 

  49. Yu.A. Rossikhin, M. Shitikova, Frac. Calc. Appl. Anal. 10, 111 (2017)

    Google Scholar 

  50. J. Long, R. Xiao, W. Chen, Mech. Mater. 127, 55 (2018)

    Google Scholar 

  51. L. Boltzmann, Akad. Wiss. Wien. Math.- Naturwiss. 70, 275 (1874)

    Google Scholar 

  52. R.A. Schapery, J. Compos. Mater. 1, 228 (1967)

    ADS  Google Scholar 

  53. F.R. Schwarzl, L.C.E. Struik, Adv. Mol. Relax. Processes 1, 291 (1967)

    Google Scholar 

  54. S. Bernstein, Acta Math. 52, 1 (1928)

    Google Scholar 

  55. A. Hanyga, Math. Comput. Model. 34, 1399 (2001)

    Google Scholar 

  56. B. Coleman, W. Noll, Rev. Mod. Phys. 33, 239 (1961)

    ADS  Google Scholar 

  57. J. Garbarski, Polym. Eng. Sci. 32, 107 (1992)

    Google Scholar 

  58. D. Roylance, Engineering Viscoelasticity (Department of Material Science and Engineering- MIT, Cambridge, MA, 2001)

  59. G.H. Pauluno, Z.H. Jin, J. Appl. Mech. 68, 129 (2001)

    ADS  Google Scholar 

  60. H. Schiessel, R. Metzler, A. Blumen, T.F. Nonnenmacher, J. Phys. A 28, 6567 (1995)

    ADS  Google Scholar 

  61. A. Papagiannnopoulos, K. Sotiropoulos, S. Pispas, Food Hydrocolloids 61, 201 (2016)

    Google Scholar 

  62. R.A. Crook, A. Letton, Eng. Fracture Mech. 44, 167 (1993)

    ADS  Google Scholar 

  63. F.C. Meral, T.J. Roston, R. Magin, Commun. Nonlinear Sci. Numer. Simul. 15, 939 (2010)

    ADS  MathSciNet  Google Scholar 

  64. R. Metzler, W. Schick, H.-G. Kilian, T.F. Nonnenmacher, J. Chem. Phys. 103, 7180 (1995)

    ADS  Google Scholar 

  65. N.B. Wyatt, M.W. Liberatore, J. Appl. Polym. Sci. 114, 4076 (2010)

    Google Scholar 

  66. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press and World Scientific, London-Singapore, 2010)

  67. R.S. Anderssen, A.R. Davies, F.R. de Hoog, ANZIAM J. 48, 346 (2007)

    Google Scholar 

  68. R.D. Bradshaw, L.C. Brinson, Mech. Time-Depend. Mater. 1, 85 (1997)

    ADS  Google Scholar 

  69. F. Mainardi, G. Spada, Rheol. Acta 51, 783 (2012)

    Google Scholar 

  70. B. Gross, Mathematical Structure of the Theories of Viscoelasticity (Herman, Paris, 1953)

  71. B. Babaei, A. Davarian, K.M. Pryse, E.L. Elson, G.M. Genin, J. Mech. Behav. Biomed. Mater. 55, 32 (2016)

    Google Scholar 

  72. N.G. McGrum, C.P. Buckley, C.B. Bucknall, Principles of Polymer Engineering, 2nd ed. (Oxford Science Publications, Oxford, 2003)

  73. D. Jaloha, A. Constantinescu, R. Neviere, Int. J. Solids Struct. 67--68, 169 (2015)

    Google Scholar 

  74. Y. Sun, J. Chen, B. Huang, Construct. Build. Mater. 99, 226 (2015)

    Google Scholar 

  75. J.C. Mauro, Y.Z. Mauro, Physica A 506, 75 (2018)

    ADS  MathSciNet  Google Scholar 

  76. Z. Shou, F. Chen, H. Yin, Mech. Mater. 117, 116 (2018)

    Google Scholar 

  77. P. Fernandez, R.M. Lamela Rey, A. Fenandez Canteli, Strain 47, 188 (2011)

    Google Scholar 

  78. G.A. Holzapfel, Int. J. Numer. Methods Eng. 39, 3903 (1996)

    Google Scholar 

  79. K.L. Troyer, D.J. Estep, Ch.M. Puttliz, Acta Biomater. 8, 240 (2012)

    Google Scholar 

  80. N. Ravikumar, C. Noble, E. Cramphorn, Z.A. Taylor, J. Mech. Behav. Biomed. Mater. 47, 87 (2015)

    Google Scholar 

  81. S.T. Choi, S.R. Lee, Y.Y. Earmme, Acta Mater. 56, 5377 (2008)

    Google Scholar 

  82. R.A. Schapery, in Mechanics of composite materials, Vol. 2, edited by G.P. Sendeckyi (Academic Press, New York, 1974) pp. 85--169

  83. A.W. Huang, C.H. Lu, S.C. Wu, R.P. Vinci, W.L. Brown, M.T. Lin, Thin Solid Films 618, 2 (2016)

    ADS  Google Scholar 

  84. J. Enderlein, R. Erdmann, Opt. Commun. 134, 371 (1997)

    ADS  Google Scholar 

  85. P. Fajman, J. Seinoja, Comput. Struct. 85, 1514 (2007)

    Google Scholar 

  86. A. Tayeb, M. Arfaoui, A. Zine, A. Hamdi, J. Benabdallah, M. Ichchou, Int. J. Mech. Sci. 130, 437 (2017)

    Google Scholar 

  87. E. Vandenberghe, S. Choucharina, S. Luca, B. De Ketelaere, J. De Baerdemaeker, J. Claes, J. Food Eng. 142, 31 (2014)

    Google Scholar 

  88. S.A. Hill, The Analytic Representation of Viscoelastic Material Properties Using Optimization Techniques (NASA TM-108394, 1993) 199

  89. A. Phillips, P. Pankaj, F. May, K. Taylor, C. Howie, A. Usmani, Biomateials 27, 2162 (2006)

    Google Scholar 

  90. P.H. DeHoff, A.A. Barrett, R.B. Lee, K.J. Anusavice, Dental Mater. 24, 744 (2008)

    Google Scholar 

  91. S.W. Park, Y.R. Kim, J. Mater. Civ. Eng. 13, 26 (2001)

    Google Scholar 

  92. K. Adolfsson, M. Enelund, P. Olsson, Mech. Time-Depend. Mater. 9, 15 (2005)

    ADS  Google Scholar 

  93. D. Valerio, J.T. Machado, Commun. Nonlinear Sci. Numer. Simul. 19, 3419 (2014)

    ADS  MathSciNet  Google Scholar 

  94. H.W. Zhou, C.P. Wang, B.B. Han, Z.Q. Duan, Int. J. Rock Mech. Min. Sci. 48, 116 (2016)

    Google Scholar 

  95. A. Bjorck, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996)

  96. G.C. Berry, D.J. Plazek, Rheol. Acta 36, 320 (1997)

    Google Scholar 

  97. J. Trzmiel, K. Weron, J. Janczura, E. Placzek-Popko, J. Phys. Condens. Matter 21, 345802 (2009)

    Google Scholar 

  98. M.N. Berberan-Santos, E.N. Bodunov, B. Valeur, Fluorescence of Supermolecules, Polymers, and Nanosystems (Springer, Berlin, 2008)

  99. H.G. Sun, X.X. Hao, Y. Zhang, D. Baleanu, Physica A 468, 590 (2017)

    ADS  MathSciNet  Google Scholar 

  100. R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer-Verlag, Wien, 1997)

  101. F. Mainardi, J. Alloys Compd. 211--212, 534 (1994)

    Google Scholar 

  102. F.Mainardi, P. Paradisi, in Proceedings of the 36th Conference on Decision and Control, San Diego, California, FP16 (1997) 4961

  103. M. Stiassnie, Appl. Math. Model. 3, 300 (1979)

    Google Scholar 

  104. R.C. Koeller, J. Appl. Mech. 51, 299 (1984)

    ADS  MathSciNet  Google Scholar 

  105. R.C. Koeller, Acta Mech. 58, 251 (1986)

    MathSciNet  Google Scholar 

  106. N. Heymans, J.C. Bauwens, Rheol. Acta 33, 210 (1994)

    Google Scholar 

  107. S. Holm, IFAC-PapersOnLine 48-1, 378 (2015)

    Google Scholar 

  108. S. Holm, in IEEE International Ultrasonics Symposium (IUS) (2015), INSPEC Accession Number: 15615411, https://doi.org/10.1109/ULTSYM.2015.0132

  109. F. Mainardi, G. Spada, Eur. Phys. J. ST 193, 133 (2011)

    Google Scholar 

  110. M. Sasso, G. Palmieri, D. Amodio, Mech. Time-Depend. Mater. 15, 367 (2011)

    ADS  Google Scholar 

  111. M. Di Paola, A. Pirrota, A. Valenza, Mech. Mater. 43, 799 (2011)

    Google Scholar 

  112. M. Di Paola, F.P. Pinnola, M. Zingales, Comput. Math. Appl. 66, 608 (2013)

    MathSciNet  Google Scholar 

  113. S. Andre, Y. Meshaka, Chr. Cunat, Rheol. Acta 42, 500 (2003)

    Google Scholar 

  114. R. Meng, D.-S. Yin, C.S. Drapaca, Comput. Mech. (2019) https://doi.org/10.1007/s00466-018-1663-9

  115. J. Hristov, Math. Nat. Sci. 1, 1 (2017)

    Google Scholar 

  116. J. Singh, D. Kumar, D. Baleanu, Adv. Differ. Equ. 2018, 231 (2018)

    Google Scholar 

  117. J. Hristov, Progr. Fract. Differ. Appl. 3, 255 (2017)

    Google Scholar 

  118. M. Caputo, M. Fabrizio, Meccanica 52, 3043 (2017)

    MathSciNet  Google Scholar 

  119. T.M. Atanackovc, St. Pilipovic, D. Zorica, Fract. Calc. Appl. Anal. 21, 29 (2018)

    MathSciNet  Google Scholar 

  120. T.M. Atanackovic, M. Janev, St. Pilipovic, Meccanica 54, 155 (2019)

    MathSciNet  Google Scholar 

  121. V.E. Tarasov, Commun. Nonlinear Sci. Numer. Simul. 62, 157 (2018)

    ADS  MathSciNet  Google Scholar 

  122. A. Atangana, Chaos, Solitons Fractals 114, 347 (2015)

    ADS  Google Scholar 

  123. A. Atangana, J.F. Gomez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)

    ADS  MathSciNet  Google Scholar 

  124. S. Das, Asian J. Res. Rev. Phys. 1, 1 (2018)

    ADS  Google Scholar 

  125. V.F. Morales Delgado, J.F. Gomez-Aguilar, M.A. Taneco-Hernandez, R.F. Escobar, Int. J. Circ. Theory Appl. 46, 2394 (2018)

    Google Scholar 

  126. M.A.F. dos Santos, Fractal Fract. 2, 20 (2018)

    Google Scholar 

  127. D. Kumar, J. Singh, D. Baleanu, Sushila, Physica A 492, 155 (2018)

    ADS  MathSciNet  Google Scholar 

  128. A.A. Tateishi, H.V. Ribeiro, E.K. Lenzi, Front. Phys. 5, 52 (2017)

    Google Scholar 

  129. D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu, Adv. Mech. Eng. (2017) https://doi.org/10.1177/1687814017690069

  130. J. Singh, D. Kumar, D. Baleanu, Math. Model. Nat. Phenom. 14, 303 (2019)

    Google Scholar 

  131. M. Hajipour, A. Jajarmi, D. Baleanu, H.-G. Sun, Commun. Nonlinear Sci. Numer. Simul. 69, 119 (2019)

    ADS  MathSciNet  Google Scholar 

  132. D. Baleanu, A. Jajarmi, M. Hajipour, Nonlinear Dyn. 94, 397 (2018)

    Google Scholar 

  133. A. Jajarmi, D. Baleanu, Chaos, Solitons Fractals 113, 221 (2018)

    ADS  MathSciNet  Google Scholar 

  134. A. Jajarmi, D. Baleanu, E. Bonyah, M. Hajipour, Adv. Differ. Equ. 2018, 230 (2018)

    Google Scholar 

  135. A. Jajarmi, D. Baleanu, J. Vib. Control 24, 2430 (2017)

    Google Scholar 

  136. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jerey, D.E. Knuth, Adv. Comput. Math. 5, 329 (1996)

    MathSciNet  Google Scholar 

  137. N. Sasaki, Y. Nakayama, M. Yoshikawa, A. Enyo, J. Biomech. 26, 1369 (1993)

    Google Scholar 

  138. N. Sasaki, A. Enyo, J. Biomech. 28, 809 (1995)

    Google Scholar 

  139. H. Xu, X. Jiang, Comput. Math. Appl. 73, 1377 (2017)

    MathSciNet  Google Scholar 

  140. S.H.J. Andrews, J.B. Rattner, N.G. Shrive, J.L. Ronsky, J. Biomech. 48, 1485 (2015)

    Google Scholar 

  141. J. Schneider, J. Hilcken, A. Aronen, R. Karvinen, J.F. Olesen, J. Nielsen, Eng. Struct. 122, 42 (2016)

    Google Scholar 

  142. W. Sheng, R. Alcorn, A. Lewis, Ocean Eng. 105, 43 (2015)

    Google Scholar 

  143. F. Liu, C. Li, S. Liu, G.M. Genin, G. Huang, T.J. Lu, F. Xu, Theor. Appl. Mech. Lett. 5, 222 (2012)

    Google Scholar 

  144. R.L. Bagley, P.J. Torvik, J. Rheol. 27, 201 (1983)

    ADS  Google Scholar 

  145. P.E. Rouse jr., J. Chem. Phys. 21, 1272 (1953)

    ADS  Google Scholar 

  146. B.H. Zimm, J. Chem. Phys. 24, 269 (1956)

    ADS  MathSciNet  Google Scholar 

  147. M. Fukunaga, N. Shimizu, ASME J. Comput. Non-Linear Dyn. 10, 061002 (2015)

    Google Scholar 

  148. M. Fukunaga, N. Shimizu, ASME J. Comput. Non-Linear Dyn. 6, 021005 (2011)

    Google Scholar 

  149. M.D. Ortigueira, J.A.T. Machado, Commun. Nonlinear Sci. Numer. Simul. 59, 608 (2018)

    ADS  MathSciNet  Google Scholar 

  150. R. Hilfer, Y. Luchko, Mathematics 7, 149 (2019)

    Google Scholar 

  151. S.P. Nashholm, S. Holm, Frac. Calc. Appl. Anal. 16, 26 (2013)

    Google Scholar 

  152. R. Bagley, P.J. Torvik, J. Rheol. 30, 133 (1986)

    ADS  Google Scholar 

  153. W.G. Glockle, T.F. Nonnemacher, Macromolecules 24, 6426 (1991)

    ADS  Google Scholar 

  154. M. Renardy, Rheol. Acta 21, 251 (1982)

    MathSciNet  Google Scholar 

  155. A.D. Baczewski, S.D. Bond, J. Chem. Phys. 139, 044107 (2013)

    ADS  Google Scholar 

  156. J. Fricks, L. Yao, T.C. Elston, M.G. Forest, SIAM J. Appl. Math. 69, 1277 (2009)

    MathSciNet  Google Scholar 

  157. R.A. Schapery, J. Appl. Phys. 35, 1451 (1964)

    ADS  MathSciNet  Google Scholar 

  158. R.A. Schapery, J. Appl. Mech. 32, 611 (1965)

    ADS  MathSciNet  Google Scholar 

  159. L.W. Morland, E.H. Lee, Trans. Soc. Rheol. 4, 233 (1960)

    MathSciNet  Google Scholar 

  160. M.L. Williams, AIAA J. 2, 785 (1964)

    ADS  Google Scholar 

  161. F. Schwartzl, A.J. Staverman, J. Appl. Phys. 23, 838 (1952)

    ADS  Google Scholar 

  162. N.G. van Kampen, Braz. J. Phys. 28, 90 (1998)

    ADS  Google Scholar 

  163. A. Giusti, Nonlinear Dyn. 93, 1757 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Hristov.

Additional information

Non-Markovian is the rule, Markov is an exception. (N.G. van Kampen, Braz. J. Phys. 28, 90 (1998)) and, in the context of the present discussion, we continue The power-law is an exception (short and long time approximation), the non-power-law is natural. (the Author)

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hristov, J. Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. Eur. Phys. J. Plus 134, 283 (2019). https://doi.org/10.1140/epjp/i2019-12697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12697-7

Navigation