Skip to main content
Log in

Locality and multi-level sampling with fermions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Multi-level Monte Carlo sampling techniques exploit the locality of quantum field theory to provide a solution in purely-bosonic quantum field theories to the signal-to-noise ratio problem that affects the lattice determination of a large class of quantities. However, it is not straightforward to generalize multi-level sampling to lattice theories with fermionic content, such as QCD, due to the loss of manifest locality after the fermion path integral is performed. We discuss how the decrease of the fermion propagator with Euclidean distance induces a systematic approximation of the fermion propagator and the fermion determinant, in which the gauge field dependence of distant spacetime regions is completely factorized. This allows us to apply multi-level sampling to the lattice QCD computation of hadronic observables, such as mesonic and baryonic correlators. In particular, we show an application of this strategy to the disconnected contribution to the correlator of two flavour-singlet pseudoscalar densities, which results in a significant increase of the signal-to-noise ratio when a two-level sampling scheme is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Durr et al., Science 322, 1224 (2008)

    Article  ADS  Google Scholar 

  2. S. Borsanyi et al., Science 347, 1452 (2015)

    Article  ADS  Google Scholar 

  3. D. Mohler, S. Schaefer, J. Simeth, EPJ Web of Conferences 175, 02010 (2018)

    Article  Google Scholar 

  4. G. Parisi, Phys. Rep. 103, 203 (1984)

    Article  ADS  Google Scholar 

  5. G.P. Lepage, The analysis of algorithms for lattice field theory, in Boulder ASI 1989 (1989) pp. 97--120

  6. H.B. Meyer, H. Wittig, Prog. Part. Nucl. Phys. 104, 46 (2019)

    Article  ADS  Google Scholar 

  7. O. Bär, Phys. Rev. 94, 054505 (2016)

    Article  Google Scholar 

  8. G. Parisi, R. Petronzio, F. Rapuano, Phys. Lett. B 128, 418 (1983)

    Article  ADS  Google Scholar 

  9. M. Lüscher, P. Weisz, JHEP 09, 010 (2001)

    Article  Google Scholar 

  10. H.B. Meyer, JHEP 01, 048 (2003)

    Article  ADS  Google Scholar 

  11. M. Della Morte, L. Giusti, Comput. Phys. Commun. 180, 813 (2009)

    Article  ADS  Google Scholar 

  12. M. Della Morte, L. Giusti, Comput. Phys. Commun. 180, 819 (2009)

    Article  ADS  Google Scholar 

  13. M. Della Morte, L. Giusti, JHEP 05, 056 (2011)

    Article  ADS  Google Scholar 

  14. M. García Vera, S. Schaefer, Phys. Rev. D 93, 074502 (2016)

    Article  ADS  Google Scholar 

  15. D.H. Weingarten, D.N. Petcher, Phys. Lett. B 99, 333 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Hasenbusch, Phys. Rev. D 59, 054505 (1999)

    Article  ADS  Google Scholar 

  17. F. Knechtli, U. Wolff, Nucl. Phys. B 663, 3 (2003)

    Article  ADS  Google Scholar 

  18. A. Hasenfratz, P. Hasenfratz, F. Niedermayer, Phys. Rev. D 72, 114508 (2005)

    Article  ADS  Google Scholar 

  19. J. Finkenrath, F. Knechtli, B. Leder, Comput. Phys. Commun. 184, 1522 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Duane, A. Kennedy, B.J. Pendleton, D. Roweth, Phys. Lett. B 195, 216 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Cè, L. Giusti, S. Schaefer, Phys. Rev. D 93, 094507 (2016)

    Article  ADS  Google Scholar 

  22. M. Cè, L. Giusti, S. Schaefer, Phys. Rev. D 95, 034503 (2017)

    Article  ADS  Google Scholar 

  23. M. Cè, Solving the $\ab{U}_{A}(1)$ problem of QCD: new computational strategies and results, PhD thesis (Scuola Normale Superiore di Pisa, 2017)

  24. M. Cè, C. Consonni, G.P. Engel, L. Giusti, Phys. Rev. D 92, 074502 (2015)

    Article  ADS  Google Scholar 

  25. M. Cè, M. Garcia Vera, L. Giusti, S. Schaefer, Phys. Lett. B 762, 232 (2016)

    Article  ADS  Google Scholar 

  26. E. Witten, Nucl. Phys. B 156, 269 (1979)

    Article  ADS  Google Scholar 

  27. G. Veneziano, Nucl. Phys. B 159, 213 (1979)

    Article  ADS  Google Scholar 

  28. K. Cichy, E. Garcia-Ramos, K. Jansen, K. Ottnad, C. Urbach, JHEP 09, 020 (2015)

    Article  Google Scholar 

  29. P. Dimopoulos, arXiv:1812.08787 [hep-lat] (2018)

  30. M. Cè, L. Giusti, S. Schaefer, PoS LATTICE2016, 263 (2017)

    Google Scholar 

  31. M. Cè, L. Giusti, S. Schaefer, EPJ Web of Conferences 175, 11005 (2018)

    Article  Google Scholar 

  32. L. Giusti, P. Hernandez, M. Laine, P. Weisz, H. Wittig, JHEP 04, 013 (2004)

    Article  ADS  Google Scholar 

  33. T. DeGrand, S. Schaefer, Comput. Phys. Commun. 159, 185 (2004)

    Article  ADS  Google Scholar 

  34. S. Collins, G. Bali, A. Schäfer, PoS LATTICE2007, 141 (2007)

    Google Scholar 

  35. G.S. Bali, S. Collins, A. Schäfer, Comput. Phys. Commun. 181, 1570 (2010)

    Article  ADS  Google Scholar 

  36. T. Blum, T. Izubuchi, E. Shintani, Phys. Rev. D 88, 094503 (2013)

    Article  ADS  Google Scholar 

  37. M. Lüscher, Comput. Phys. Commun. 156, 209 (2004)

    Article  ADS  Google Scholar 

  38. L. Giusti, M. Cè, S. Schaefer, EPJ Web of Conferences 175, 01003 (2018)

    Article  Google Scholar 

  39. M. Guagnelli, R. Sommer, H. Wittig, Nucl. Phys. B 535, 389 (1998)

    Article  ADS  Google Scholar 

  40. M. Lüscher, S. Schaefer, https://luscher.web.cern.ch/luscher/openQCD/

  41. M. Lüscher, S. Schaefer, Comput. Phys. Commun. 184, 519 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. C.R. Allton, V. Giménez, L. Giusti, F. Rapuano, Nucl. Phys. B 489, 427 (1997)

    Article  ADS  Google Scholar 

  43. C. Thron, S.J. Dong, K.F. Liu, H.P. Ying, Phys. Rev. D 57, 1642 (1998)

    Article  ADS  Google Scholar 

  44. C. McNeile, C. Michael, Phys. Rev. D 63, 114503 (2001)

    Article  ADS  Google Scholar 

  45. R. Sommer, Nucl. Phys. B Proc. Suppl. 42, 186 (1995)

    Article  ADS  Google Scholar 

  46. M. Foster, C. Michael, Phys. Rev. D 59, 074 (1999)

    MathSciNet  Google Scholar 

  47. L. Giusti, T. Harris, A. Nada, S. Schaefer, in 36th International Symposium on Lattice Field Theory (Lattice 2018) East Lansing, MI, United States, July 22-28, 2018 Vol. LATTICE2018 (2018) p. 028

  48. M. Lüscher, JHEP 07, 081 (2007)

    Article  Google Scholar 

  49. M. Lüscher, Comput. Phys. Commun. 165, 199 (2005)

    Article  ADS  Google Scholar 

  50. M. Lüscher, Schwarz factorization of the quark determinant, unpublished notes

  51. H. Radjavi, J.P. Williams, Michigan Math. J. 16, 177 (1969)

    Article  MathSciNet  Google Scholar 

  52. P. Fritzsch et al., Nucl. Phys. B 865, 397 (2012)

    Article  ADS  Google Scholar 

  53. M. Lüscher, Nucl. Phys. B 418, 637 (1994)

    Article  ADS  Google Scholar 

  54. A. Boriçi, Ph. de Forcrand, Nucl. Phys. B 454, 645 (1995)

    Article  ADS  Google Scholar 

  55. A. Boriçi, Ph. de Forcrand, Nucl. Phys. Proc. Suppl. 47, 800 (1996)

    Article  ADS  Google Scholar 

  56. B. Jegerlehner, Nucl. Phys. B 465, 487 (1996)

    Article  ADS  Google Scholar 

  57. B. Jegerlehner, Nucl. Phys. B Proc. Suppl. 42, 879 (1995)

    Article  ADS  Google Scholar 

  58. M. Hasenbusch, Phys. Lett. B 519, 177 (2001)

    Article  ADS  Google Scholar 

  59. M. Hasenbusch, K. Jansen, Nucl. Phys. Proc. Suppl. 106-107, 1076 (2002)

    Article  ADS  Google Scholar 

  60. J.C. Sexton, D.H. Weingarten, Nucl. Phys. B 380, 665 (1992)

    Article  ADS  Google Scholar 

  61. T.A. Manteuffel, Numer. Math. 28, 307 (1977)

    Article  MathSciNet  Google Scholar 

  62. Y. Saad, Iterative Methods for Sparse Linear Systems, second edition (SIAM, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cè.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cè, M. Locality and multi-level sampling with fermions. Eur. Phys. J. Plus 134, 299 (2019). https://doi.org/10.1140/epjp/i2019-12655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12655-5

Navigation