Skip to main content
Log in

Modeling the indoor gamma-radiation dose: A review of refinements and application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A theoretical model to estimate the gamma-radiation dose rates inside a room is reviewed, refined and applied. The scheme of the model is based on the relative effects of the different room elements that control the amount of radiation. The relative dose rates are simulated by the MCNP5 software. The studied gamma radiation is the one due to the two radioactive decay series 238U and 232Th, and the radionuclide 40K. The affecting elements considered are the widths of the parts of the room, the density of the construction material, the lengths and heights of the different parts of the room, radiation from neighboring rooms, the uncertainty in the equilibrium of the 238U series. The effects of the existence of a gap inside some of the walls and the existence of partial walls, windows and doors are also studied. The model is applied through an example that includes all the enrolled factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Ackers, J.F. Den Boer, P. De Jong, R.A. Wolschrijn, Sci. Total Environ. 45, 151 (1985)

    Article  ADS  Google Scholar 

  2. J.A. Ademola, I.P. Farai, Radiat. Prot. Dosim. 114, 524 (2005)

    Article  Google Scholar 

  3. N. Ahmad, A.J.A. Hussein, Aslam, J. Environ. Radioact. 41, 127 (1998)

    Article  Google Scholar 

  4. P. De Jong, W. Van Dijk, H.P. Burger, ${}^{226}$Ra and ${}^{228}$Ra concentrations in gypsum plasters and mortars used in the Netherlands, in Proceedings of the Second International Symposium on Naturally Occurring Radioactive Materials (NORM II), Nov. 10-13, 1998, Krefeld, Germany (ENA, 1998) pp. 58--61

  5. L. Koblinger, Health Phys. 34, 459 (1978)

    Article  Google Scholar 

  6. M.F. Máduar, G. Hiromoto, Radiat. Prot. Dosim. 111, 221 (2004)

    Article  Google Scholar 

  7. A. Malanca, V. Pessina, G. Dallara, Braz. Radiat. Prot. Dosim. 48, 199 (1993)

    Google Scholar 

  8. R. Mustonen, Radiat. Prot. Dosim. 7, 235 (1984)

    Article  Google Scholar 

  9. R.S. O’Brien, Health Phys. 72, 92 (1997)

    Article  Google Scholar 

  10. I. Othman, M. Mahrouka, Radiat. Prot. Dosim. 55, 299 (1994)

    Google Scholar 

  11. E. Stranden, Phys. Med. Biol. 24, 921 (1979)

    Article  Google Scholar 

  12. Enhanced radioactivity of building materials, Radiation Protection 96 (European Commission, Luxembourg, 1999)

  13. Radiological protection principles concerning the natural radioactivity of building materials, Radiation Protection 112 (European Commission, Luxembourg, 1999)

  14. Commission recommendation 90/143/Euratom of 21 February 1990 on the protection of the public against indoor exposure to radon. Off, J. Eur. Commun. L80 (European Communities, Luxembourg, 1990)

  15. J.S. Puskin, Health Phys. 84, 526 (2003)

    Article  Google Scholar 

  16. B.L. Cohen, Health Phys. 68, 157 (1995)

    Article  Google Scholar 

  17. M. Al-Zoughool, D. Krewski, Int. J. Radiat. Biol. 85, 57 (2009)

    Article  Google Scholar 

  18. MCNP - a general Monte Carlo N-Particle transport software, version 5 (Los Alamos National Laboratory, Los Alamos, 2005)

  19. M. Orabi, J. Environ. Radioact. 165, 54 (2016)

    Article  Google Scholar 

  20. M. Orabi, Radiat. Phys. Chem. 147, 114 (2018)

    Article  Google Scholar 

  21. M. Orabi, Health Phys. 112, 294 (2017)

    Article  Google Scholar 

  22. G. Keller, B. Hoffmann, T. Feigenspan, Sci. Total Environ. 272, 85 (2001)

    Article  ADS  Google Scholar 

  23. K. Kovler, A. Perevalov, V. Steiner, E. Rabkin, Health Phys. 86, 505 (2004)

    Article  Google Scholar 

  24. N.M. Mirza, B. Ali, S.M. Mirza, M. Tufail, N. Ahmad, Radiat. Prot. Dosim. 38, 307 (1991)

    Article  Google Scholar 

  25. M.M. Sherif, M. Orabi, S.Y. Abdo, Gamma radiation dose assessment in Yemeni buildings, in Proceedings of the XX International Scientific Conference of Young Scientists and Specialists (AYSS-2016), JINR, Dubna, Russia, 2016 (INDICO, 2017) p. 290

  26. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1keV to 20MeV for elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, Report PB95-220539 (National Institute of Standards and Technology, Gaithersburg, 1995)

  27. UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiations sources, effects and risks of ionizing radiation (United Nations, New York, 2000)

  28. S. Stoulos, M. Manolopoulou, C. Papastefanou, J. Environ. Radioact. 69, 225 (2003)

    Article  Google Scholar 

  29. P. Ujic, I. Celikovic, A. Kandic, I. Vukanac, M. Durasevic, D. Dragosavac, Z. Zunic, Appl. Radiat. Isotopes 68, 201 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Orabi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orabi, M. Modeling the indoor gamma-radiation dose: A review of refinements and application. Eur. Phys. J. Plus 134, 290 (2019). https://doi.org/10.1140/epjp/i2019-12649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12649-3

Navigation