Skip to main content
Log in

Optical detection of CO gas by the surface-plasmon resonance of Ag nanoparticles and nanoclusters synthesized on a hydrogenated amorphous carbon (a-C:H) film

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Ag nanoparticles were deposited on a hydrogenate amorphous carbon (a-C:H) thin film as a host by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) for various deposition times. We observed that as the sputtering time increases, the particle shape of the deposited nanostructures changes to a cluster shape. AFM images show that the accumulation of the nanoparticles on each other leads to the vertical growth of the nanoclusters. According to X-ray diffraction patterns, the crystalline structure is formed for the nanocluster shape. The Fourier-transform infrared (FTIR) spectroscopy showed that bonds are formed between Ag ions and free hands of carbons on the surface of the a-C:H film. The peak related to carbide structures is seen around 2100cm^-1. UV-Vis spectroscopy demonstrates that the formation of Ag nanoclusters leads to the appearance of a sharp plasmonic peak, shifted towards longer wavelengths. The plasmonic peak of Ag was used for detecting CO gas in the ambient air. The adhesion of CO molecules to the Ag particles makes a significant change in the plasmonic peak. In the presence of CO gas flow, the localized surface plasmon resonance (LSPR) of Ag nanoclusters moves to a longer wavelength (red-shift) and the LSPR intensity increases. The sample with a nanocluster structure is a better adsorber for CO molecules due to its larger specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

  2. R. Aroca, Surface-Enhanced Vibrational Spectroscopy (John Wiley and Sons, Inc., England, 2006) pp. 48--57

  3. E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  4. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  5. E. Hutter, J.H. Fendler, Adv. Mater. 16, 1685 (2004)

    Article  Google Scholar 

  6. P.M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen, K. Nikitin, R.E. Palmer, J.A. Preece, S.D. Evans, D. Fitzmaurice, Langmuir 20, 3766 (2004)

    Article  Google Scholar 

  7. F. Juillerat, H.H. Solak, P. Bowen, H. Hoffmann, Nanotechnology 16, 1311 (2005)

    Article  ADS  Google Scholar 

  8. S. Meškinis, A. Čiegis, A. Vasiliauskas, A. Tamulevičiene, K. Slapikas, R. Juškenas, G. Niaura, S. Tamulevičius, Appl. Surf. Sci. 317, 1041 (2014)

    Article  ADS  Google Scholar 

  9. A. Moores, F. Goettmann, New J. Chem. 30, 1121 (2006)

    Article  Google Scholar 

  10. C. Noguez, J. Phys. Chem. C 111, 3806 (2007)

    Article  Google Scholar 

  11. J. Oviedo, R.E. Palmer, J. Chem. Phys. 117, 9548 (2002)

    Article  ADS  Google Scholar 

  12. G. Schmid, D. Fenske, Philos. Trans. Math. Phys. Eng. Sci. 368, 1207 (2010)

    Article  ADS  Google Scholar 

  13. S. Talu, Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications (Napoca Star Publishing House, Cluj-Napoca, Romania, 2015)

  14. S. Ţălu, M. Bramowicz, S. Kulesza, V. Dalouji, S. Solaymani, S. Valedbagi, Microsc. Res. Tech. 79, 1208 (2016)

    Article  Google Scholar 

  15. M. Zare, S. Solaymani, A. Shafiekhani, S. Kulesza, S. Ţălu, M. Bramowicz, Sci. Rep. 8, 10870 (2018)

    Article  ADS  Google Scholar 

  16. S. Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, M. Rahmati, A. Ghaderi, M. Ahmadirad, S. Solaymani, Surf. Interface Anal. 49, 153 (2017)

    Article  Google Scholar 

  17. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, M. Ahmadi, M. Panahandeh, M. Heidari Saani, Physica B: Condens. Matter 405, 3949 (2010)

    Article  ADS  Google Scholar 

  18. S. Tamulevičius, S. Meškinis, K. Slapikas, A. Vasiliauskas, R. Gudaitis, M. Andrulevičius, A. Tamulevičiene, G. Niaura, Thin Solid Films 538, 78 (2013)

    Article  ADS  Google Scholar 

  19. M. Ahmadirad, A. Yazdani, K. Rahimi, Eur. Phys. J. Plus 133, 216 (2018)

    Article  Google Scholar 

  20. J.M. Bingham, J.N. Anker, L.E. Kreno, R.P. Van Duyne, J. Am. Chem. Soc. 132, 17358 (2010)

    Article  Google Scholar 

  21. X. Lang, L. Qian, P. Guan, J. Zi, M. Chen, Appl. Phys. Lett. 98, 093701 (2011)

    Article  ADS  Google Scholar 

  22. T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000)

    Article  Google Scholar 

  23. M. Treguer- Delapierre, J. Majimel, S. Mornet, E. Duguet, S. Ravaine, Gold Bull. 41, 195 (2008)

    Article  Google Scholar 

  24. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  25. L.M. Liz-Marzan, Mater. Today 7, 26 (2004)

    Article  Google Scholar 

  26. J. Liu, J.C. Bernard, K. Seeger, R.E. Palmer, Appl. Phys. Lett. 73, 2030 (1998)

    Article  ADS  Google Scholar 

  27. A.J. Parker, P.A. Childs, R.E. Palmer, M. Brust, Appl. Phys. Lett. 74, 2833 (1999)

    Article  ADS  Google Scholar 

  28. T.J. Krinke, H. Fissan, K. Deppert, M.H. Magnusson, Appl. Phys. Lett. 78, 3708 (2001)

    Article  ADS  Google Scholar 

  29. N.C. Bigall, A. Eychmüller, Philos. Trans. R. Soc. A 368, 1385 (2010)

    Article  ADS  Google Scholar 

  30. B. Corain, M. Zecca, P. Canton, P. Centomo, Philos. Trans. R. Soc. A 368, 1495 (2010)

    Article  ADS  Google Scholar 

  31. S. Meškinis, T. Tamulevičius, G. Niaura, K. Slapikas, A. Vasiliauskas, O. Ulčinas, S. Tamulevičius, J. Nanosci. Nanotechnol. 16, 10143 (2016)

    Article  Google Scholar 

  32. R. Dreyfus et al., Nature 437, 862 (2005)

    Article  ADS  Google Scholar 

  33. I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, S. Zumer, Science 313, 954 (2006)

    Article  ADS  Google Scholar 

  34. S.L. Biswal, A.P. Gast, Phys. Rev. E 69, 041406 (2004)

    Article  ADS  Google Scholar 

  35. J.B. Jackson, S.C. Westcott, L.R. Hirsch, J.L. West, N. Halas, J. Appl. Phys. Lett. 82, 257 (2003)

    Article  ADS  Google Scholar 

  36. I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, Phys. Rev. Lett. 81, 1600 (1998)

    Article  ADS  Google Scholar 

  37. J.P.K. Doye, D.J. Wales, New J. Chem. 22, 733 (1998)

    Article  Google Scholar 

  38. B.B. Yellen, O. Hovorka, G. Friedman, Proc. Natl. Acad. Sci. U.S.A. 102, 8860 (2005)

    Article  ADS  Google Scholar 

  39. Y. Yin, Y. Lu, B. Gates, Y. Xia, J. Am. Chem. Soc. 123, 8718 (2001)

    Article  Google Scholar 

  40. Y. Lu, Y. Yin, Z.Y. Li, Y. Xia, Nano Lett. 2, 785 (2002)

    Article  ADS  Google Scholar 

  41. W.C. Hung, W.H. Cheng, M.S. Tsai, Y.C. Juan, I.M. Jiang, P. Yeh, Appl. Phys. Lett. 90, 183115 (2007)

    Article  ADS  Google Scholar 

  42. S.Y. Park, D. Stroud, Phys. Rev. B 68, 224201 (2003)

    Article  ADS  Google Scholar 

  43. T. Ghodselahi, H. Zahrabi, M. Heidari Saani, M.A. Vesaghi, J. Phys. Chem. C 115, 22126 (2011)

    Article  Google Scholar 

  44. M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 7, 1779 (1997)

    Article  Google Scholar 

  45. M. Ando, T. Kobayashi, S. Iijima, M. Haruta, Sens. Actuators B 96, 589 (2003)

    Article  Google Scholar 

  46. G. Sirink, R. Siddique, I. Manning, Ph.H. Rogers, M. Carpenter, J. Phys. Chem. B 110, 13508 (2006)

    Article  Google Scholar 

  47. Y. Chao, H. Yang, Y. Li, S. Guo, Cheng Wang, Chuan Wang, Chem. Phys. Lett. 708, 183 (2018)

    Article  ADS  Google Scholar 

  48. P. Prosposito et al., Beilstein J. Nanotechnol. 7, 1654 (2016)

    Article  Google Scholar 

  49. C.J. Hulteen, A.D. Treichel, T.M. Smith, L.M. Duval, R.T. Jensen, P.R. Van Duyne, J. Phys. Chem. B 103, 3854 (1999)

    Article  Google Scholar 

  50. M.E. Hicks, O. Lyandres, W.P. Hall, S. Zou, R.M. Glucksberg, P.R. Van Duyne, J. Phys. Chem. C 111, 4116 (2007)

    Article  Google Scholar 

  51. M.A. Hung, M.C. Micheel, D.L. Bozano, W.L. Osterbur, M.G. Wallraff, N.J. Cha, Nat. Nanotechnol. 5, 121 (2009)

    Article  ADS  Google Scholar 

  52. S. Meškinis, A. Vasiliauskas, K. Slapikas, R. Gudaitis, M. Andrulevičius, A. Čiegis, G. Niaura, R. Kondrotas, S. Tamulevičius, Surf. Coat. Technol. 255, 84 (2014)

    Article  Google Scholar 

  53. I. Yaremchuk, S. Meškinis, V. Fitio, Y. Bobitski, K. Slapikas, A. Čiegis, Z. Balevičius, A. Selskis, S. Tamulevičius, Nanoscale Res. Lett. 10, 157 (2015)

    Article  ADS  Google Scholar 

  54. W.C. Lan, S.F. Ou, M.H. Lin, K.L. Ou, M.Y. Tsai, Ceram. Int. 39, 4099 (2013)

    Article  Google Scholar 

  55. Y. Wu, J. Chen, H. Li, L. Ji, Y. Ye, H. Zhou, Appl. Surf. Sci. 284, 165 (2013)

    Article  ADS  Google Scholar 

  56. J. Robertson, Mater. Sci. Eng.: R: Reports 37, 129 (2002)

    Article  Google Scholar 

  57. M. Ohring, The Materials Science of Thin Films (Academic Press, Inc., 1992)

  58. M. Spolaore, V. Antoni, M. Bagatin, A. Buffa, Surf. Coat. Technol. 116, 1083 (1999)

    Article  Google Scholar 

  59. R.E.H. Clark, D.H. Reiter (Editors), Nuclear Fusion Research (Springer, 2005)

  60. Y. Kudriavtsev et al., Appl. Surf. Sci. 239, 273 (2005)

    Article  ADS  Google Scholar 

  61. K.B. Mogensen, K. Kneipp, J. Phys. Chem. C 118, 28075 (2014)

    Article  Google Scholar 

  62. V. Ţucureanu, A. Matei, A.M. Avram, Crit. Rev. Anal. Chem. 46, 502 (2016)

    Article  Google Scholar 

  63. R. Paul, R.N. Gayen, S. Hussain, V. Khanna, R. Bhar, A.K. Pal, Eur. Phys. J. Appl. Phys. 47, 10502 (2009)

    Article  ADS  Google Scholar 

  64. D. Makwana, J. Castano, R.S. Somani, H.C. Bajaj, Arab. J. Chem. (2018) https://doi.org/10.1016/j.arabjc.2018.08.017

  65. A. Fahmy, W.H. Eisa, M. Yosef, A. Hassan, J. Spectrosc. 2016, 7489536 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Yazdani.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadirad, M., Yazdani, A. & Rahimi, K. Optical detection of CO gas by the surface-plasmon resonance of Ag nanoparticles and nanoclusters synthesized on a hydrogenated amorphous carbon (a-C:H) film. Eur. Phys. J. Plus 134, 328 (2019). https://doi.org/10.1140/epjp/i2019-12646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12646-6

Navigation