Skip to main content
Log in

Adiabatic stability of stellar models in the unimodular framework

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We investigate the behaviour of the Tolman metrics within the formalism of the trace-free (or unimodular) gravity. A solution generating algorithm is presented which influences the physical character of the models proposed. Specifically an additive constant of integration (K) is persistently in attendance and while it has little influence on the density, pressure, energy conditions and sound speed it exerts considerable influence on the equation of state, active gravitational mass and hence the compactification parameter (mass-to-radius ratio) as well as on the Chandrasekhar adiabatic stability index. A thorough study of the Tolman IV and V metrics is conducted and it is evident that the adiabatic stability criterion \(\frac{\rho + p}{p} \frac{\mathrm{d}p}{\mathrm{d}\rho} > \frac{4}{3}\) is achievable in the presence of K but not without at least in the Tolman IV case. A range of parameter values for the Tolman V solution is considered and graphical plots corroborate that the Tolman choice \(n = \frac{1}{2}\) only allows for the model’s compatibility with the elementary requirements for physical plausibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  2. G.F.R. Ellis, H. van Elst, J. Murugan, J.-P. Uzan, Class. Quantum Grav. 28, 225007 (2011)

    Article  ADS  Google Scholar 

  3. G.F.R. Ellis, Gen. Relativ. Gravit. 46, 1619 (2014)

    Article  ADS  Google Scholar 

  4. J.L. Anderson, D. Finkelstein, Am. J. Phys. 39, 901 (1971)

    Article  ADS  Google Scholar 

  5. D.R. Finkelstein, A.A. Galiautdinov, J.E. Baugh, J. Math. Phys. 42, 340 (2001) arXiv:gr-qc/0009099v1

    Article  ADS  MathSciNet  Google Scholar 

  6. L. Smolin, Phys. Rev. D 80, 084003 (2009) arXiv:0904.4841v1 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  8. S. Hansraj, A. Banerjee, Phys. Rev. D 97, 104020 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Rastall, Phys. Rev. D 6, 3357 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Rastall, Can. J. Phys. 54, 66 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Hansraj, A. Banerjee, arXiv:1807.00812 [gr-qc]

  12. M. Visser, Phys. Lett. B 782, 83 (2018)

    Article  ADS  Google Scholar 

  13. S. Hansraj, R. Goswami, N. Mkhize, G.F.R. Ellis, Phys. Rev. D 96, 044016 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.R. Finch, J.E.F. Skea, Class. Quantum Grav. 6, 467 (1989)

    Article  ADS  Google Scholar 

  15. J.D. Walecka, Phys. Lett. B 59, 109 (1975)

    Article  ADS  Google Scholar 

  16. D. Gross, Nucl. Phys. Proc. Suppl. 74, 426 (1999)

    Article  ADS  Google Scholar 

  17. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Lovelock, J. Math. Phys. 13, 874 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  20. T.P. Sotiriou, Class. Quantum Grav. 23, 5117 (2006)

    Article  ADS  Google Scholar 

  21. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  22. W.C. Saslaw, S.D. Maharaj, N.K. Dadhich, Astrophys. J. 471, 571 (1996)

    Article  ADS  Google Scholar 

  23. U.S. Nilsson, C. Uggla, Ann. Phys. 286, 278 (2001)

    Article  ADS  Google Scholar 

  24. U.S. Nilsson, C. Uggla, Ann. Phys. 286, 292 (2001)

    Article  ADS  Google Scholar 

  25. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Chandrasekhar, Phys. Rev. Lett. 12, 114 (1964)

    Article  ADS  Google Scholar 

  27. Ch.C. Moustakidis, Gen. Relativ. Gravit. 49, 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Nariai, Sci. Rep. Tohoku Univ. 34, 160 (1950)

    ADS  MathSciNet  Google Scholar 

  30. B. Kuchowicz, Acta Phys. Pol. 32, 253 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudan Hansraj.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansraj, S., Mkhize, N. Adiabatic stability of stellar models in the unimodular framework. Eur. Phys. J. Plus 134, 137 (2019). https://doi.org/10.1140/epjp/i2019-12637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12637-7

Navigation