Skip to main content
Log in

Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this investigation, a theoretical discussion of a fractional model of a heat order equation of a semiconductor medium in form of a spherical small cavity is studied. The model is taken as one dimensional under the effect of magnetic field and initial stress. The variable thermal conductivity is considered as a linear function of temperature (which depends on temperature). The medium has been studied in the context of photothermal transport processes (excited by light). The model presents the interaction between the waves of plasma (carrier density of free electric charge), namely the elastic and the thermal waves. The Laplace transform method is used to solve the main equations in cylindrical coordinates. The numerical technique (which depends on the Fourier series expansion) is used to get the complete solutions of the main variables under investigation. The thermal and mechanical loads such as the ramp heat type and free traction are applied to the inner surface of the cavity to obtain the main physical fields. The numerical computations of some main physical fields are discussed and plotted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Biot, J. Appl. Phys. 27, 240 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)

    Article  ADS  Google Scholar 

  3. A.E. Green, K.A. Lindsay, J. Elast. 2, 1 (1972)

    Article  Google Scholar 

  4. D.S. Chandrasekharaiah, Appl. Mech. Rev. 39, 355 (1986)

    Article  ADS  Google Scholar 

  5. D.S. Chandrasekharaiah, Appl. Mech. Rev. 51, 705 (1998)

    Article  ADS  Google Scholar 

  6. J.N. Sharma, V. Kumar, C. Dayal, J. Therm. Stress. 26, 925 (2003)

    Article  Google Scholar 

  7. M. Caputo, F. Mainardi, Pure Appl. Geoph. 91, 134 (1971)

    Article  ADS  Google Scholar 

  8. M. Caputo, F. Mainardi, Riv. Nuovo Cimento 1, 161 (1971)

    Article  Google Scholar 

  9. M. Caputo, J. Acoust. Soc. Am. 56, 897 (1974)

    Article  ADS  Google Scholar 

  10. Y.Z. Povstenko, J. Therm. Stress. 28, 83 (2005)

    Article  Google Scholar 

  11. Yu.N. Rabotnov, Creep of Structural Elements (Nauka, Moscow, 1966) (in Russian)

  12. F. Mainardi, Applications of fractional calculus in mechanics, in Transforms Method and Special Functions, edited by P. Rusev, I. Dimovski, V. Kiryakova (Bulgarian Academy of Sciences, Sofia, 1998) pp. 309--334

  13. M.A. Ezzat, Appl. Math. Model. 35, 4965 (2011)

    Article  MathSciNet  Google Scholar 

  14. M.A. Ezzat, A.S. El-Karamany, Can. J. Phys. 89, 311 (2011)

    Article  ADS  Google Scholar 

  15. Kh. Lotfy, Chaos, Solitons Fractals 99, 233 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  17. L.B. Kreuzer, J. Appl. Phys. 42, 2934 (1971)

    Article  ADS  Google Scholar 

  18. A.C. Tam, Ultrasensitive Laser Spectroscopy (Academic Press, New York, 1983) pp. 1--108

  19. A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  20. A.C. Tam, Photothermal Investigations in Solids and Fluids (Academic Press, Boston, 1989) pp. 1--33

  21. D.M. Todorovic, P.M. Nikolic, A.I. Bojicic, J. Appl. Phys. 85, 7716 (1999)

    Article  ADS  Google Scholar 

  22. Y.Q. Song, D.M. Todorovic, B. Cretin, P. Vairac, Int. J. Solids Struct. 47, 1871 (2010)

    Article  Google Scholar 

  23. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  Google Scholar 

  24. Anh D. Phan, Do T. Nga, Nguyen A. Viet, Opt. Commun. 410, 108 (2018)

    Article  ADS  Google Scholar 

  25. Kh. Lotfy, Can. J. Phys. 94, 400 (2016)

    Article  ADS  Google Scholar 

  26. S. Abo-Dahab, Kh. Lotfy, Waves Random Complex Media 27, 67 (2016)

    Article  ADS  Google Scholar 

  27. Kh. Lotfy, N. Sarkar, Mech. Time-Depend. Mater. 21, 519 (2017)

    Article  ADS  Google Scholar 

  28. H. Youssef, Can. Appl. Math. Q. 13, 369 (2005)

    MathSciNet  Google Scholar 

  29. H. Youssef, A. El-Bary, Math. Probl. Eng. 2006, 87940 (2006)

    Article  Google Scholar 

  30. H. Youssef, I. Abbas, Comput. Methods Sci. Technol. 13, 95 (2007)

    Article  Google Scholar 

  31. M.A. Ezzat, A.A. El-Bary, Int. J. Therm. Sci. 108, 62 (2016)

    Article  Google Scholar 

  32. A.N. Vasil’ev, V.B. Sandomirskii, Sov. Phys. Semicond. 18, 1095 (1984)

    Google Scholar 

  33. C. Christofides, A. Othonos, E. Loizidou, J. Appl. Phys. 92, 1280 (2002)

    Article  ADS  Google Scholar 

  34. Y.Q. Song, J.T. Bai, Z.Y. Ren, Acta Mech. 223, 1545 (2012)

    Article  MathSciNet  Google Scholar 

  35. G. Honig, U. Hirdes, J. Comput. Appl. Math. 10, 113 (1984)

    Article  MathSciNet  Google Scholar 

  36. Kh. Lotfy, Silicon, https://doi.org/10.1007/s12633-018-0005-z (2018)

  37. Kh. Lotfy, Physica B: Condens. Matter 537, 320 (2018)

    Article  ADS  Google Scholar 

  38. F. Hamza, A.M. Abd El-Latief, M. Abdou, Mech. Adv. Mater. Struct. 23, 689 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Lotfy.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfy, K., El-Bary, A.A. & Tantawi, R.S. Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory. Eur. Phys. J. Plus 134, 280 (2019). https://doi.org/10.1140/epjp/i2019-12631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12631-1

Navigation